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Abstract—The petrotogy and geochemistry of tweniy-three chondritic dust particles with masses of 1-
47 pg {sizes 100-400 um) were recovered from blue ice near Cap Prudhomme, Antarctica, and studied
by INAA, ASEM, EMPA, and optical microscopy. Sample selection criteria were irregular shape and
(for a subsample ) black color, with the aim of studying as many unmelted micrometeorites { MMs) as
possible. Of thirteen unmelted MMs, six were phyllosilicate-dominated MMs, and seven were coarse-
grained crystalline MMs consisting mainly of olivine and pyroxene. The remaining ten particles were
iargely melted and consisted of a foamy melt with variable amounts of relic phases (scoriaccous MMs).
Thus, of the black particles selected, an astonishing portion, 40% (by number), consisted of largely
unmelted MMs,

Ailthough unmelted, most phyllosilicate MMs have been thermally metamorphosed to a degree that
most of the phyllosilicates were destroyed, but not melted. The original preterrestriai mineralogy 1s oc-
casionally preserved and consists of serpentine-like phylosilicates with variable amounts of cronstedtite,
tochilinite-like oxides, clivine, and pyroxene. The crystalline MMs consist of olivine, low-Ca pyroxene,
tochilinite-like oxides, and occasional Ni-poor metal, Relics in scoriaceous MMs consist of the same
phases. Mineral compositions and the coexistence of phyllosilicates with anhydrous phases are typical
of CM and CR-type carbonaccous chondrites. However, the olivine/pyroxene ratio {~1) and the lack
of carbonates, sulfates, and of very Fe-poor, refractory ciement-rich olivines and pyroxenes scts the MMs
apart from CM and CR chondrites.

The bulk chemistry of the phyliosilicate MMs is similar to that of CM chondrites. However, several
elements are either depleted (Ca, Ni, S, less commonly Na, Mg, and Mn) or enriched (K, Fe, As, Br,
Rb, 8b, and Au) in MMs as compared to CM chondrites, Similar depletions and enrichments are also
found in the scoriaceous MMs. We suggest that the depletions are probably due to terrestrial leaching of
sutfates and carbonates from unmelted MMs. The overabundance of some elements may also be due 10
processes acting during atmospheric passage such as the recondensation of meteoric vapors in the high
atmosphere.

Most MMs are coated by magnetite of platy or octahedral habit, which is rich in Mg, Al, Si, Mn, and
Ni. We interpret the magnetites to be products of recondensation processes in the high (>90 km) at-
mosphere, which are, therefore, probably the first refractory acrominerals identified.

INTRODUCTION Unmeclied dust of the main size-population has not been
available for study for a number of reasons: First, theory

THE EARTH ACCRETES between 15,000-50,000 t/a of extra-
terrestrial matter { HUGHES, 1978; Ky TE and WASsSON, 1986;
EsstR and TUREKIAN, 1988; LovE and BROWNLEE, 1993).
Most of it ( ~95%) is dust, within the mass range from 108
1o 1072 g corresponding to a particle size-range of about 40
to 1500 pm (HUGHES, 1978). Curiously, this is the matter
of which we arc most ignorani because it was not available
for study in the laboratory until very recently. Large exira-
terrestrial particles (centimeter to meter in diameter) arc fairly
unimportani for the current accretionary infall, but are very
well studied (although still not very well understood, e.g.,
WASSCN, 1985; KURAT, 1988). Also, the smaller dust frac-
tion, between 5-15 um, has been fairly well characterized
since samples became available some 20 vears ago {“inter-
planctary dust particles™, IDPs, collected by aeroplanes in
the stratosphere, e.g., BROWNLEE, 1981, {985}. The molien
remnanis of larger sized interplanetary dust, the “cosmic
spherules,” which have been studied for over a century (and
are still occasionally mistaken for large meteoroid ablation
spherules), have also been fairly well characterized.
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predicts thal dust particles =30 gm in size cannot survive
atmospheric entry unaliered (KORNBLUM, 1969; HUGHES,
1978; Love and BROWNLEE, 1991). They arc supposed to
mell and partly evaporate due to frictional heating. Second,
the rich mines of small extraterrestrial matter, the ocean floor
sediments { BROWNLEE, 1985} and the Greenland cryoconite
(MAURETTE ¢t al., 1986}, did not provide thermally unaliered
extraterrestrial particles. However, the lack of such particles
is likely to be an artefact. Worms and rhizopods (in the deep-
sea sediments) and siderobacteria (in the cryoconite)} are
probably the culprits. Unmelted interplanetary dust is mostly
friable and easily destroyed if attempts are made to metabolize
it (by animals)} or to frec it from the cryoconite (by man).
In any case, the nonavailability of the most common matter
accreting onto the Earth has been accepted by the scientific
community as being natural and unavoidable, and appro-
priate efforts were put into the collection of the small dust
fraction from the stratosphere.

The presence of a fair amount of large, partly melted par-
ticles in cryoconite ( MAURETTE et al., 1986, 1987; ROBIN et
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al., 1990) led one of us (M. Maurette) to believe that therc
must be reservoirs of unmelted samples on Earth. The places
where such particles would be the least exposed to terresirial
destructive processes are the polar ice sheets. The first attempt
to mine such matter from the Antarctic ice at Cap Prud-
homme near the French station Dumont d’Urville was highly
successful. More than 20,000 particles (30-400 pm) were
collected by melting about 100 1 of ice (MAURETTE et al,,
1989a,b, 1991). The largest part of this collection comprises
partly melted and unmelted micrometcorites. We prefer to
call the large unmelted dust particles “micromeieorites” in
order to distinguish them from the much smaller IDPs or
stratospheric dust particles. Thus, the first collection of mi-
crometeorites outweighed the IDP collection, put together
over 2() years ( BROWNLEE, 1985}, by a factor of about 1000.
During the second expedition in the Antarctic summer 1990/
91, 250 t of ice were melted and 20,000 more particles were
added to the micrometeorite collection {MAURETTE et al.,
1992a).

First studies of selected samples of this newly availabie,
most important, and totally unknown, extraterrestrial matter
showed that the unmelted micrometeorites

1) have approximately chondritic abundances of most re-
fractory elements (with some cxceptions) { MAURETTE et
al, 1991; KOEBERL et al., 1992; KURAT et al., 1992a,
1993; PRESPER et al., 1993);

2) are depleted in Na, Ca, Ni, §, Se, and Zn compared to
CI chondrites and enriched in K, Rb, U, As, and Sb
(KOEBERL et al., 1992; KURAT et al., 1992a,b; KLOCK et
al., 1992a; MAURETTE ¢t al., 1991, 1992hb; BECKERLING
ct al., 1992; PRESPER ¢t al., 1993);

3} are commonly eariched in C as compared to Orgueil {CI),
and some carry a peculiar Fe-oxide rich in C, P, §, and
other elements (COPS, see PERREAU et al., 1992, 1993;
ENGRAND et al., 1993);

4} consist of hydrous and anhydrous silicates mixed in all
possible proportions, and contain oxides, suifides, and
metal--comparable to the mincralogy of CM chondrites
(BRANDSTATTER ¢t al., 1991; CHRISTOPHE MICHEL-LEVY
and BOUROT-DENISE, 1992; KLOCK ct al., 1992b; KURAT
et al., 1992b, PRESPER et al., 1992); and

5) contain solar energetic particle (SEP) gases, confirming
that they have been exposed to the solar wind as micro-
meteoroids (MAURETTE ct al., 1989¢, 1991},

The search for isotopic anomalies and interstellar grains has
so far been negative (ALEXANDER et al., 1992), but only a
very small fraction of the available samples has yet been an-
alyzed.

Here we report the results of a combined geochemical and
petrological study of a suite of large micrometeorites selected
from the 1991 EUROMET expedition to Aniarctica
(MAURETTE et al., {992a). In this first study we concentrate
on chondritic micrometeorites, which were purposely selected
from the dust collection, which undoubtedly hosts a variety
of dust objects, and probably also some nonchondritic ex-
traterrestrial dust. Thus, this report should be understood as
an attempt to characterize the chondritic portion of the in-
terplanctary dust collected by the Antarctic ice.

Preliminary results have previously been reported by
BRANDSTATTER et al. (1991), KOEBERL et al, (1992), KURAT
et al. (1992a,b, 1993), MAURETTE et al. (1992b, 1993},
PRESPER (1993), and PRESPER ¢t al. (1992, 1993).

DEFINITIONS

As indicated above we will call the large-sized unmelted interplan-
etary dust particle micrometeorites { MMs) (Figs. 1, 2). Such MMs
may have experienced a variety of alterations, mainly by the action
of frictional heat during atmospheric entry, Thus, we distinguish MMs
without any sign of thermal alteration, those showing different degrees
of thermal metamorphosis, and those which were partly melted to
various degrees. The latter grade, with increasing degree of melting,
into scoriaceous micrometeorites (Fig, 3), which are quenched foamy
melts with various amounts of relic phases. Depending on the peak
temperature experienced and the duration of the thermal event, sco-
riaceous MMs are successively degassed and surface tension tends to
shape them into droplets. These have been called cosmic spherules
for a long time. This name applies to all round or droplet-shaped
objects, regardless of the amount of vesicles they contain. Again, we
sce a gradual change from highly vesicular, scoriaceous cosmic spher-
ules to the totatty degassed, dense, and quench-textured chondritic
cosmic spherules. Magnetite cosmic spherules are obviously a different
variety.

Unmelted (and partly melted) interplanctary dust particles col-
lected in the stratosphere have been dubbed interplanctary dust par-
ticles (EDPs). | is unfortunate that the general name for the total
mass spectram of dust has been given to the small tail (~5-15 um)
of that dust size distribution, which, in addition to being small, con-
tributes fittle to the total terrestrial infall (e.g., LOVE and BROWNLEE,
1993). Eventually, the name should be changed—and we strongly
recommend to use the term stratospheric tnterplanciary dust particles
{SIDPs, which could also stand for “small interplanctary dust par-
ticles™).

Small particles (in the sizc range of SIDPs) must also be present
in the Antarctic ice. However, they have not yet been collected. An
attempt during the 199371994 field season { MAURETTE et al., 1992a)
was, unfortunately, unsuccessful. Processing of ice samples should
produce a collection of small dust samples in the near future.

SAMPLES AND METHODS

From about 260 t of melt ice water, approximately 50 g of sediments
were extracted in four size fractions: 25-50 gm, 50-100 pm, 100-
400 um, and >400 xm (MAURETTE ¢t al., 1992a}. The twenty-five
daily collections during January 1991 are of different quality but, on
average, condain a high proportion of extralerrestrial maticr (about
10% of the particles <100 um). Aboul 80% of those, especially in
the 50100 gm size-fraction, consist of partly melted to unmelted
micrometeorites, The > 100 um size-fractions contain a higher pro-
portion of terrestrial debris, as well as cosmic spherules and scorfaceous
MMs, than the smaller size fractions, but also coniain unmelted mi-
crometeorites. We selected particles from the 100-400 prm size frac-
tion, ¢collected on January 15, 1991, for this study (samples 9101 15A
and 9101 15B). Individual particles were handpicked under a bin-
ocular microscope. Selection criteria were irregular shape and dark
color.

For instrumental acutron activation analysis (INAA), four sets of
particles were selected, comprising seven to twelve particles each.
These sets were labelled M, AM, 3M, and 4M. Each particle is iden-
tified by its number within a set following the set name {(c.g., M1,
M2, etc.). The samples were weighed with a Mettler UM3 ultra-
microbalance. Sample masses ranged from 1~17 ug, with one sample
having 47 ug. Particles were individually placed into smali depressions
on circular high-purity quartz disks. The disks were then stacked
together with disks containing standards, which were placed on the
top and bottom of the stack. Granite G-2 {USGS, GovINDARAIU,
1984) and Allende meieorite powder (1.8, National Museum, Ja-
ROSEWICH et al., [987) were used as standards. Twoe scts of both
standards, weighing up 10 | mg each, were used for each irradiation.
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The stack was packed in aluminum foil and irsadiated in aluminum
rabbits for about 120 h at the 10 MW ASTRA research reactor of
the Forschungszentrum Seibersdosf, Niederdsterreich, at a flux of 6
X 0¥ nem2s'.

Afler cooling for 2 days, samples and standards were transported
to the counting laboratory at the University of Vienna, reweighed,
and individually transferred into polyethylene capsules. The samples
were counted utilizing HpGe detectors with up 1o 48% relative cffi-
ciency and 1.85 keV resolution at 1332 keV {see KOEBERL, 1993).
This sctup allows the determination of the concentrations of twenty-
five to thirty-five clements in samples larger than about 2 pg mass.
Fhree measurement cycles were performed, with the first starting 2
days after the end of the irradiation and the last one 2bout | month
later. Counting times ranged from about 5 h 1o 3 days. The precision
is believed to range between 10-20% for most clementis. For standard
deviations exceeding + 40% only upper limits are given. The major
factor affecting accuracy is the error made in weighing samples in
the 1-10 wg range. After cooling for several months, the particles
were mounted on a glass slide, carbon coated, and studied with a
JEOL6400 analytical scanning electron microscope. Subsequently,
the samples were mounted in epoxy and polished. The sections were
studied under an optical microscope and with an analytical scanning
electron microscope. Bulk and mineral analyses were made with an
automated ARL-SEMQ electron microprobe (EMP) operated at 15
kV acceleration potential and 15 nA bhecam current. Measurements
were made against mineral standards. Standard Bence-Albee correc-
tions were applicd Tor matrix effects. Bulk rock analyses were made
while scanning the eiectron beam (in TV mode) over areas poor in
voids. No correction for matrix effects was applied. Bulk glass anatyses
were made by applying the mineral analysis procedure.

RESULTS

A total of thirty-seven mostly black particles, but including
a few that are transparent as well as some that are rusly, were
analyzed by INAA, A few particies were lost during handling,
Of the remaining particles, twenty-five turned out to be of
approximately chondritic composition. Two of these were
cosmic spherules and were not included in this dataset. Thus,
twenty-three particles gualified to be included into this report,
representing a tolal mass of 189.5 ug.

Mineralogy and Petrology

The twenty-three particles exhibit (as expected ) a varicty
of texiures. According to their texture and mineralogy (Ap-
pendix), they can be grouped into the following classes:

1) Largely unmelted micrometeorites (MMs) consisting ci-
ther mainly of (a) phyllosilicates (“phyllosilicate MM™)
or of (b} coarse-grained anhydrous minerals (“crystalline
MMs™"), or of mixtures thereof (Figs. 1, 2).

2) Scoriaceous micrometeorites consisting of a highly vesic-
utar melt {Fig. 3) which may contain various amounts
of relic phases (mainly anhydrous silicates). Scoriaccous
MMs grade, with increasing degree of degassing and re-
shaping, into droplets (Fig. 3d).

3} Cosmic spherules. Transitional types can be either rich
in vesicles or in relic anhydrous minerals. The typical
final product is a compact, quench-textured, silicate-rich
spherule.

Phyllosilicate MMs consist mainly of phyllosilicates, oxides,
various amounts of pyroxencs, and olivines, and usually
contain only trace amounts of sulfides. There s some variety
of phyilosilicates present, but their nature cannot be estab-

lished properly by the methods available to us. Matrix phyl-
iosilicates have typicat chondritic major and minor element
abundances (Table 1, AM4, 4M1), with only a few excep-
tions. Totals of the analyses vary, indicating different degrees
of dchydration by thermal metamorphism during atmo-
spheric entry (compare AK Al, 1988). Cronstedtite-like phases
are quite common (Table 1, AMS5). Oxides have complex
compositions dominated by iron oxide, contain ali major
chondritic elements, and have low {otals. This may indicate
a high degree of oxidation and/or some volatile content. Sul-
fur is always present in minor amounts { ~0.}-1 wt%, not
shown in Table 1). Some similarity to tochilinite is apparent.
A laihunite-like phase was encountered in particle 3M8.

Coarse-grained crystalline MMs have mostly porphyritic
textures and consist of oliving, pyroxene, plagioclase, and
some not well-defined iron oxides sef into a fine-grained or
glassy matrix, Accessory phases are chromite, metal, and sul-
fides. Olivines range in composition from Fa 2 to Fa 37 and
have highly variable miner element contents { Table 2). The
iow-Fe olivine of M1 has a high TiQ; content, intcrmediate
conients of ALO;, CrO;, MnO, and CaQ, and a FeQ/MnO
ratio of 15. Fayalite-rich (Fa 11-37) olivines are commonly
paor in minor elements, with the cxception of Ca0 and NiO,
which can be high (M7, AMS, AM9). The FeO/MnO ratios
vary from 24 1o 45 for the low-Fe olivings, and from 60 1o
130 for the Fe-rich ones. In many cases olivine compositions
are variable within narrow lHmits. The low-Ca pyroxenes are
FeO-bearing (11-13 wt%) and are either rich (M6} or poor
(M1 in minor elements. Their FeO/MnO ratios are smail
{24-28). An augite was enceuntered in one sample (M1).
Plagioclase (An 12} is present in two particles (M7 and AM9)
where it coexists with Fa-rich oliving (Fa 30 and Fa 35, re-
spectively ), one of which is also rich in NiO (0.5 wt%, M7)
and coexists with Cr- and Ni-bearing magnetite. Apparently
hydrated oxides are present in AM8. They are rich in minor
clements and particularly rich in Al and Cr. These oxides
resemble fow-S tochilinite. Chromites or Cr-rich spinels are
common, but usually too small for analysis (<5 um). A Cr-
poor Al-spinel was found in particle AMS, coexisting with
Ni-rich olivine and tochilinite-like oxide.

Scoriaceous MMs are naturally dominated by glass, quench
olivine, and quench magnetite—all too fine-grained to allow
analysis. Scoriaceous MMs commonly contain relic phases
which comprise olivine, pyroxene, plagioclase, iron oxides,
and phyllosilicates { Table 3}, Most particles contain Fe-poor
olivines (Fa 1-2), which are always rich in Cr and Mn, re-
sulting in an FeQ/MnQ ratio of 3-12. Only one Fe-poor
olivine contains karger amounis of Ti, Al, and Ca (M4). Fa-
yalite-rich olivines range from Fa 23 to Fa 31. This range is
covered by the olivine of particle M2 which is unusual in
being exceptionally rich in TiQ; (0.59 wi% )}, ALOs (2.69),
Cr;0, (0.36), NiO (1.07), and CaQ (0.75), and which scems
to contain some alkali elernents. A second Fa-rich olivine
(Fa 28} is present in particle M4, where it coexists with a
forsterite rich in minor elements. This Fa 28 ohlivine also
contains Ni, some Cr, and Al The FeQ/MnO ratios of fayal-
itic olivines arc 87 and 132, respectively. Pyroxenes are typ-
ically enstatites (Fs 1-5), which are rich in minor ¢lements
{Ti, Al, Cr, Ca) and sometimes contain NiG (about 0.1 wt%).
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Their FeO/MnO ratios are ajl very low (4-12). One augite
grain was found in particle 3M2 (coexisting with cnstatite,
plagioclase, and iron oxide} which is rich i TiO; (0.45 wi%),
AlLO: (4.4%), Cry0O; (2.1%), and particularly in MnO
(2.68%). Its FeO/MnO ratio is only 0.75. Plagioclase {An
23 coexisting with this unusual augite in particle 3M2 is also
unusually rich in minor elements such as Ti, Fe, Mn, and
Mg, and has a FeO/MnO ratio of about unity. Iron oxides
are common but have diverse compositions. All of them have
high NiQ contents ( 1-1.4 wt%), and MgO conients ranging
up to 1.2 wi% suggest a solid solution with Mg(OH ),.

One scoriaceous MM (4M12) has preserved a core of
phyllosilicates of chondritic composition. The analysis shows
depletions in Na, Ni, Ca, and Mn, a feature commenly found
in phyllosilicate MMs (compare KURAT ¢t al., 1992a,b).
Phyllosilicates in 4M12, however, appear 1o be thermally
metamorphosed, as indicated by the high total of the analysis
and the lack of birefringence.

Bulk Compositions

Bulk major and minor element contents of micrometeo-
rites, as determined by broad-beam electron microprobe
techniques, are given in Table 4. Bulk data acquired by INAA
are given in Table 5. The last column in Table 5 shows the
range of precision for the determination of the elemental
concentrations. The precision varies somewhal for individual
analyses, because of factors such as difference in sample mass,
clemental concentration, counting parameters, and spectral
interferences. Bulk data acquired by EMPA technigues rep-
resent areas of a given object, which could be probed by the
electron beam. In many cases the size of these arcas is re-
stricted and appropriate spots were usually found in the center
of the particles. It is therefore not surprising that bulk abun-
dances determined by EMPA and INAA occasionally dis-
agree. The most common case shows considerably higher
abundances for the real bulk analysis, as determined by INAA,
as compared to EMPA data. This holds for siderophiie (Fe,
Ni) and lithophile (Cr, Na) elementis (Fig. 4). These elements
appear to be inhomogeneousty distributed within a given
particle, with enrichments preferentially at or near the surface.
The enrichment of Fe and Ni is commonly visible as mag-
netite envelopes (see below ). Occastonally Na (as NaCl) is
also present at the surface.

Major and minor elements

Major and minor element abundances in phyllosilicate
MMs are mostly chondritic, but some fractionations are ap-

parent (Fig. 5). The phyllosilicate MMs tend to be depleted
in Ca, Na, Ni, and 8 (Fig. 5a) as compared to CI chondrites,
Potassium can bhe either depleted or enriched. Crystalline
MMs naturally show a wider spread in major and minor
clement abundances {Fig. 5b) and seem 1o form two com-
positional groups: One group shows unfractionated abun-
dances of lithophile elements Al, Ti, Ca, Mg, Si, Mn, and
Na, and depietions in Cr and K; these samples comprise por-
phyritic fragmenis. The second group, consisting of an olivine
crystal (M7) and a porphyritic fragment, is depleted in Al,
Ti, Ca, Cr, Na, and K. Both groups show strong depletions
in Ni and 8 and have either high (second group) or low { first
group) Fe contents. Scoriaceous MMs have major and minor
element abundances similar to those of phyllosilicate MMs
(Fig. 5¢), but with more variation in the abundances and
tendencies towards strong depletions in Na and K contents.
However, when measured, the Na/K ratio is always below
that of CI chondrites and onc sample (3M5) is even enriched
in K compared to Cl. Also, Ni and S are depleted, with Ni
approximately to the same level as in phyllosilicate MMs,
but S to much lower levels.

Trace elements

Trace clement abundances in phyllosilicate MMs are
mainly chondritic. Refractory lithophile elements (Fig. 6a)
are, in general, unfractionated, as is the abundance of Cr.
Sodium and Zn are depleted relative 1o CEand K and Br are
often enriched (0.7-15 X CI for Br).

The crystalline MMs show some more dispersion in lith-
ophile element abundances {Fig. 6b). The refractory litho-
phile elements arc enriched and fairly unfractionated. Chro-
mium, and the more volatile elements, show large variations
and range from depleted to enriched, except for Zn, which
scems 1o be generally depieted (0.2-0.3 X CI).

The scoriaccous MMs show refractory lithophile element
patterns simifar 1o those of the other MMs (Fig. 6¢}. However,
some show strong fractionations of Sc from the REEs, which
is also seen in other micrometeorites, but less pronounced.
Chromium abundances are variable but not as much as
among the crystalline MMs. The volatile lithophile elements
are generally depleted but their abundances are highly disperse
and range from highly depleted to enriched (e.g., 0.02-1.1
X CI for Na, 0.06-2 X CI for Zn, and 0.2-12 X CI for Br}.
Again, K contents are high compared to other clements of
comparable volatility.

Siderophile elements in phyllosilicaie-rich MMs show a
peculiar pattern (Fig. 7a). The refractory siderophile elements
{Os. Ir) have unfractionated chondritic abundances. The

Fi. 1. Backscattered electron (BSE) scanning microphotographs of phyllosilicate-dominated micrometeorites. (a)
Particle 4M 1, atmost lotally covered by magnetite and cut by cracks. {b) Polished section of micrometeorite 4MI.
Fine-grained (probably dehydrated ) phyllosilicates and oxides with a large enstatite (Fs 1.5) in the center and a smail
one at the surface {lefl). The particle has several irregular voids, is cut by cracks, and is partly covered by magnetite
(light-grey 1o white). (¢} Polished section of micrometeorite 3M8 consisting of denscly intergrown fine-grained (probably
largety dehydrated) phyilositicates and a laihunite-like phase {lighter grey) and aimost totally cavered by a scoriaceous,
Fe-rich mantle {light grey} which in turn is covered by magnetite (white). The particle bas abundant irregular voids
and some open cracks. (d) Polished section of micrometcorite AMS consisting of fine-grained phyllosilicates including
cronstedtite (light grey ) and tochilinite (white), The particle has abundant irregular voids, is enveloped by a scorjaceous
mantle of variable thickness, and covered by & thin magnetite crust.
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moderately volatile elements Ni and Co are depleted relative
to Iz, with Ni being more strongly depleted than Co. Iron is
enriched over CI abundances and Au, As, and Sb are strongly
enriched (up to 3¢ X Cl). Selenium is slightly depleted (0.3-
0.8 X CI.

The crystalline MMs display considerably more spread in
their siderophile elemeni contents. On average, they are de-
pleted in Os, Ir, Ni, Co, Au, Sb, and Se as compared to CI
chondrites (Fig. 7b}. Os/Ir and Ir/Ni ratios are mostly un-
fractionated but Co/Ni ratios are commonly fractionated to
Co/Ni > or < CI. An exception is particle AM 1, which has
ir/Ni » CI. Only one crystalline MM is rich in siderophile
elements (3M4) with Os, I, Fe, Au, As, Sb > CI ~ Ni, Co
> Se, and a peculiar Os/Ir ratio. Most crystalline MMs show
volatile siderophile element patterns comparable to those of
phyllosilicate MMs. However, Au is depleted relative to Fe
in the crystalline MMs in contrast to the phyllosilicate MMs,
where Au is enriched over Fe. In most cases the Ir/Au ratio
is lower than that of CI chondrites, similar to that of phyl-
losilicate MMs.

Scoriaceous MMs (Fig. 7¢) have siderophile element pat-
terns that are very similar to thosc of phyllosilicate MMs,
Minor differences are a larger spread in abundances, a smaller
Ni depletion (relative to Ir), and somewhat lower Ay abun-
dances in the sconaceous MMs compared {o the phyllosili-
catc MMs,

Magnetite Envelopes

Most micrometeorites are partly to 1otally enveloped by
magnetite or a magnctite-like phase (Figs. 1-3, 8). Envelopes,
usually 0.5 to 1 um thick, but sometimes reaching 4 um, are
present on all types of MMs, but are particularly common
and well developed on scoriaceous MMs. Several generations
of magnetites are commonly present with morphologics
ranging from platy to octahedral and (in vesicles) acicular.
In polished sections ( Fig. 8d), the succession of different gen-
crations and the granular nature of the magnetile envelope
is occasionally visible. Magnetite covers arc commonly as-
sociated with Fe enrichment (metasomatism) of the subsirate
(Figs. 1, 3). The chemical composition of the surface mag-
netites ( Table 6) is characterized by high contents of Si0,,
Al 05, MnO, MgO, and NiQ.

DISCUSSION

Despite the crude selection criteria, we were surprisingly
successful in picking largely unmelted micrometeorites and,
especially, phyllosilicate-dominated MMs from the 100-400

um dust fraction. Naturally, the scoriaceous MMs are the
most common ones (ten out of twenty-three) followed by
the physically resistant coarse-grained crystalline MMs (seven
out of twenty-three). The high abundance of largely unmelted
phyllosilicate MMSs (26%) is surprising. It may reflect a high
survival rate, despite the fact that the 100-400 g size fraction
is rich in (totally melted) cosmic spherules (~80%). Al-
though the abundance of cosmic spherules of this dust size
fraction is not known exactly, rough estimates indicate a
spherule/nonspherule ratio of about 4 (MAURETTE et al.,
1992a). This lowers the absolute abundance of unmeited
dust to 10% and that of the phyllosilicate MMs to about 5%,
which is higher than the most optimistic theoretical estimates
{e.g., LOVE and BROWNLEE, 1991).

The number of crystalline MMs in our total sample is not
representative because we deliberately picked some trans-
parent particles. However, the proportion of phyllosilicate to
scoriaceous MMs is significant because both types fit our se-
lection criteria. The i:1 proportion is certainly surprising
considering theoretical predictions (KORNBLUM, [969;
HuGHES, 1978; Love and BROWNLEE, 1991).

The crystalline MMs comprise about 50% of the total mass
(171.5 ug); the phyliosilicate and scoriaceous MMs about
25% each. The average mass of an individual phyllosilicate
MM is 6.8 pg, that of a scoriaceous MM 4.6 ug, and that of
a crystalline MM 12.1 ug. However, more than 50% of the
total mass of crystalline MMs is represented by particle AM
(47 pg). Exchuding this particle, the average mass of crystalline
MMs becomes 6.3 ug, comparable to that of the other mi-
crometeorite types. All of them are on average more than
1000 times more massive than the average stratospheric dust
particle (SIDP) of about 10 pm diameter. However, the av-
crage mass of our micrometeorites is far from that of mete-
orites and even inferior to that of most meteorite components
(e.g., chondrules). Several questions arise: Are micromeieo-
rites representative sampies of dust from the primitive solar
nebula or do they represent components of larger units (e.g.,
chondrites); what are the similarities and differences between
micrometeorites and meteorites and micrometeorites and
SIDPs?

Mineralogy and Mineral Chemistry

The mineralogy of unmelted micrometeorites is primarily
determined by phyllosilicates, anhydrous Mg-Fe silicates, and
mixtures thereof. Thus, at first glance, a relationship with
CM chondrites is apparent. Phyllosilicate compositions { Ta-
ble 1} indicate the presence of serpeniine-like minerals and
cronstedtite (AMS). These phases are typical of CM chon-

FIG. 2. BSE scanning microphotographs of coarse-grained crystaitine micrometeorites. (a) Particle 3M4 consisting
of a large cnstatite which contains rounded inclusions of tochilinite and magnetite. The surface is stightly dusted by
fine-grained magnetite. (b) Polished section of micrometecorite 3M4 consisting of a large enstatite crystal (Fs 3),
poikilitically including smali round olivines (Fa 2, dark grey) and magnetite {white) and large tochilinite (white). Fa-
rich olivine is associated with 1ochilinite. A few very small magnetites (white) are present at the surface (right side).
{c} Porphyritic micrometeoritec M1, consisting mainiy of orthopyroxene (Fs 20-23), clinopyroxene, chromite, sulfide,
and metal (all white}, and glass {dark grey). At the right side the porphyritic MM is intergrown with olivine of Fa 2~
4 {dark grey). Note the abundant rounded voids. (d) Porphyritic micrometecrite AM9 consisting of olivine (Fa 32-
37, light grey), augite (grey), plagioclase (An 12, dark grey), and glass (dark grey). Light phases are sulfide and
chromite. The particle has abundant rounded voids and is covered by magnetite only in a few places.
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drites {e.g., MULLER et al., 1979; ZOLENSKY and MCSWEEN,
1988; BROWNING et al., 1991; GRAHAM and KURAT, 1991}).
However, seipentine-saponite inlergrowths, typical of Cl
chondrites, have also been described from a single MM
(KELLER et al., 1992},

The anhydrous phases may, as a first approximation, be
considered representative of one source sample, regardless
of their occurrence {in phyllosilicate, crystailine, or scoria-
ceous MMs).

Olivines form two distinct compositional groups: a for-
steritic one {Fa < 5% ) and a morc FeO-rich one (Fa > 10%).
This is similar to the population of olivine in CM and CR
chondrites (e.g., NELEN et al., 1975; GRADY et al,, 1986;
STEELE, 1986; KURAT ¢t al., 1989a; WEISBERG ¢t al., 1993),
However, the low-Fe olivines of MMs are, on average, richer
in FeQ than those of CM and CR chondrites (also shown by
larger numbers of samples; ¢.g., BRANDSTATTER et al., 1991,
STEELE, 1992; PRESPER et al., 1992) and poorer in refractory
minor elements such as Al and Ca, They fall, however, within
the compositional range shown by CM and CR forsterites.
The same holds for ¢lements of medium volatility, e.g., Cr
and Mn, which are fairly abundant in MM forsteries. As a
result, the FeO/MnO ratios of the MM forsterites are low
{3-15), indicating a primitive heritage comparable to that
of carbonaceous chondrite olivines.

The FeO contents of Fe-rich olivines range from 15.9 to
31.4 wi% (Tables 2 and 3). Most of these olivines represent
individual grains which presumably have retained their orig-
inal compositions. Only in particle M4 is there clear evidence
for the in-situ formation of Fe-rich olivine from a forsteritic
one, probably during melting upon atmospheric entry. This
olivine is peculiar in being rich in NiO (0.77%} and in con-
taining other minor elements (Al Cr, Mn, Ca) at a level
comparable to that of the original forsterite. This composition
is apparently the result of the transformation of a forsterite
rich in minor elements into a more fayalitic olivine under
highly oxidizing conditions (as indicated by a high NiO con-
tent}. The almost chondritic FeO /MnO ratio of 130 differs
highly from that of the forsteritic olivine (9) and apparently
reflects the buik ratio.

The other FeQ-rich olivines typically contain substantial
amounts of MnO beside FeQ resulting in FeO/MnO ratios
between 40 and 130. Interestingly, the two olivines with the
highest FeQ /MnO ratio also contain appreciable amounts of
NiQ (about 0.5%). Only one of the most FeO-rich olivings
{AM9) has an clevated CaQ content. Thus, most FeO-bearing
olivines in MMs appear to be similar in composition to those
found in carbonaceous chondrites (e.g., HOINKES and
KURAT, 1975; NELEN et al,, 1975, KuraT et al,, 1989a), but

differ in being poor in Cr, which is rare among CM and CR
olivines, and in sometimes being rich in Ni. Olivines rich in
Ni are known from the rare CK chondrites (KALLEMEYN et
al,, 1991; KURAT et al., 1991). There, olivine typically co-
exists with magnetite (Ni- and Cr-bearing) and intermediate
plagioclase. This is exactly the mineral association found in
crystalline MM M7 (Table 2), which could well represent a
rock similar to CK chondrites. The second Ni-rich olivine
encountered coexists with an oxide phase probably related
to tochilinite (AMS, Table 2). This phase, however, is typical
of CM chondrites. One olivine found in scoriaceous MM M2
(Tabie 3) has a highly peculiar composition in being ex-
tremely rich in TiO, (0.59 wit% ), Al,O; (2.69), NiQ (1.07),
and CaQ (0.75) and in containing some Nas( (0.19%). Such
olivines are, so far, known only from a rock fragment from
the Allende chondrite (AlLAF, KURAT et al., 1989b; PALME
et al., 1989), The texture of that rock fragment, constituting
an aggregate of protochondrules, as well as the very high trace
element contents of its olivines (KURAT et al., 1989¢), make
it the most primitive chondritic rock known, The olivine rich
in minor elements in MM M2 is relict and no other primary
silicate phase was found. However, ils peculiar composition
makes it likely that it was derived from a rock similar to All-
AF. Thus, the chemical composition of olivines can be in-
terpreted as indicating several sources: (1) CM and CR-like
chondrites, (2) CK-like chondrites, and (3} an All-AF-like
chondritic rock.

The notation “source chondrite” does not imply that MMs
are physical derivatives of chondritic rocks. Rather, it intends
o indicate that MMs come from a region in the solar nebula
where constituents of a certain chondritic rock have been
processed before aceretion took place. This holds for all com-
parisons made in this paper and in no case implies that MMs
have been derived from a certain chondritic rock by com-
minution, although such an origin cannot be excluded with
certainty.

Pyroxene is approximately as abundant in the microme-
teorites as olivine (see also the results derived from a larger
sample of MMs by PRESPER ¢t al., 1992; KuUraT et al., 1993).
Such a high pyroxene abundance is unusual for CM chon-
drites, with the exception of Kaidun, a complex breccia of
CM, CI, E, and other chondrites and achondrites (IVANGOV,
1989; BRANDSTATTER et al., 1992), but is a characteristic
feature of CR chondrites (e.g., WEISBERG et al., 1993). Low-
Ca pyroxenes are the most common pyroxenes in MMs. They
are of orthopyroxene composition (CaQ = 0.26-0.58%), low
in FeO (1.3-3%), and rich in minor elements (Ti, Al, Cr,
Mrn, and in some cases also Ni). Their FeQ/MnQ ratios are
low (10-13). All features, except the occasional Ni contents,

FIG. 3. BSE scanning images of scortaceous micrometeorites: (a) Particle 4M12 with rectangular shape, rounded
corners, and densc magnetite coating, {b) Palished section of micrometeorite AM 10 consisting of two highly versicular
club-shaped drops with a discontinuous magnetite cover. Note the different shades of grey which indicate variation in
Fe contents. {¢) Polished scction of micrometeoritc 4M 12 (Fig. 3a) displaying a relictic phyllosilicate core {dark grey)
cnveloped by an Fe-enriched scoriaceous mantle {light grey) and covered by magnetite (white). The light phase at
right is Fe-oxide. (d) Polished seclion of micrometeorite M4, a scoriaccous MM transitional to casmic spherules. The
almost dreplet-shaped MM has a dense quench texture (silicate plus magnetite), abundant vesicles {some of rectangular
shape), and contains abundant olivine (Fa |, dark grey) which has partly reacted to form Fe-rich ofivine (Fa 28). The

particle is incompietely covered by magnetite.
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FiG. 4. Comparison of bulk Fe contents of micrometeorites as
determined by EMPA vs, those determined by INAA. Bulk data de-
rived from analyzing the total micrometeorite deviate considerably
from those derived by EMPA by analyzing the interior which i most
cases contains much less Fe than the bulk,

are typical of low-Ca pyroxenes from carbonaceous chondrites
(e.g., HOINKES and Kura?, 1973; NELEN el al, 1975
KURAT, 1975; BRANDSTATTER £t al., 1992). Only two FeO-
rich (Fs 17-23) low-Ca pyroxenes were encountered. They
have different contents of minor elements but both have low
Fe(/MnO ratios indicating a carbonaccous chondrite heri-
tage. A pigeonite grain in 3M6 has a chemical composition
compatible with a carbonaceous chondrife heritage, except
for its high NiQ content. However, considering the small size
of this grain, the high Ni reading could be duc 10 excitation
of a nearby Ni-rich grain. One clinopyroxene grain with an
extremely low FeO/MnO ratio {0.75 } is present in scoriaceous
MM 3M2 (Table 3). Such low Fe/Mn ratios arc known only
from unequilibrated ordinary chondrites, carbonaceous
chondrites, and SIDPs {NELEN et al.,, 1975, HUTCHISON,
1987; K1.OCK et al., 1989). Thus, pyroxene compositions
indicate a general relationship to CM and CR chondrites.
However, the lack of very low-Fe pyroxenes, and the high
abundance of pyroxene, is not typical of known carbonaceous
chondrites.

Plagioclase is occasionally present in crystalline and scori-
aceous MMs and ranges in composition from An 12 to An
23, which is not typicai of carbonaceous chondrites but still
within the range of plagioclase compositions in these mete-
orites. The association of plagioclase An 12 with a Fa-rich
olivine in MM AM9 could indicate a refationship to a highly
oxidized ordinary chondrite type.

Magnetite is occasionaily present in a variety of mor-
phologies similar to those known from CM and CI chondrites
(KURAT et al.,, 1992b). In one case {M7) it is preseni in a
CK chondrite association. More common are iron oxides of
nonmagnetite composition, some with affinities towards
tochilinite, the dominating iton oxide of CM chondrites (e.g.,

ZOLENSKY, 1987). In addition, ferrobrucite {amakinite} is
occasionally present, which is also typical of CM chondrites
{ZOLENSKY and MCSWEEN, 1988). However, micromeieo-
rites commonly contain a peculiar iron oxide phase rich in
C, 0, P, 8, and other elements, which has becn dubbed COPS
(PERREAU ef al., 1992; ENGRAND et al., 1993). This phase
occurs within voids of MMs or at their surface, on top of the
magnetite crust. It is also present at the surface of some cosmic
spherules, Therefore, it must be of a post-melting origin—
consequently of terrestrial origin. Work aimed at character-
izing the COPS phase in proper detail is under way.

Metal phases are rare and present either as droplet inclu-
sions in olivines (M 1) or in the glassy matrix (4M5). They
are low in Ni, which is typical of primary metal as it is present
in Renazzo (c.g., NELEN ¢t al.,, 1975; LEE et al., 1992) and
other chondrites { PERNICK A et al., 1985, 1989). Sulfides are
rare in micrometeorites but, if present, are either low-Ni pyr-
rhotite or high-Ni pentlandite, both of which are typical of
carbonacecus chondrites.

Several phases that are abundant in CM chondrites are
not present in micrometeorites. No magnesium sulfates or
(Mg, Na) sulfates and no calcium sulfates have been en-
countered, which are typical of hydrated carbonaceous chon-
dritcs (e.g., BOSTROEM and FREDRIKSSON, 1966, FREDRIKS-
SON et al., 1980; ZoLENSKY and MCSWEEN, 1988). Also,
pone of the carbonates common in CM chondrites (calcite,
magnesite, dolomite, ankerite, and kutnahorite; e.g.,
BRANDSTATTER et al., 1987, FREDRIKSSON and KERRIDGE,
1988; JOHNSON and Prinz, 1993) have been encountered.
Some of the elemental depletions in MMs appear to be di-
rectly related to the absence of these minerals (see below).

In summary, the minecralogical and mineral chemical
composition of micrometeorites has a clear relationship to
that of hydrated carbonaceous chondrites, particularly the
CM and CR chondrites. The match, however, is not perfect
and, thus, argues against a direct derivation of MMs from
CM and CR-like rocks. The differences between MMs and
CM and CR chondrites are considerable and they appear
partly to be due to terresirial alterations of the MMs, but
some of them must be primordial. Differences most probably
due to terrestrial alteration are the lack of sulfates and car-
bonates, and the presence of COPS (plus the magnctite crusts,
see below). Sulfates and carbonates are soluble in low pH
water. Considering the fact that all precipitation from the
terrestrial atmosphere is acid, this critevion is casily met. Thus,
sulfates and carbonates could have been Jost by dissolution
in the Antarctic ice and in the meltl ice water during dust
recovery. A variety of elements could have been dissolved
with the sulfates and carbonates which are now missing in
MMs (Ca, Ni, §, Na, and also Mg and Mn; c.g., KURAT et
al., 1992a,b; PRESPER et al,, 1993; sce discussion below).
COPS is a phase not found in meteorites but is found in
meteorite fusion crusts (ENGRAND et al., 1993) and is of
terrestrial origin. It probably forms by condensaiion in the
upper atmosphere from vapors formed by evaporation of
micro- and minimeteoroids. The terrestrial E-layer has been
shown to be particularty rich in clements evaporated from
meteoroids (e.g., STEINWEG et al., 1992),

Apart from terrestrial alieration, some differences in min-
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eralogy and mineral chemistry between micrometeorites and
CM and CR chondrites remain. They point towards a some-
what different nebular processing of matter finally ending up
in either carbonaceous chondrites or interplanctary dust. The
processes which were involved were similar in both cases but
they appear 10 have been operative to differing degrees in
creating these different sample populations.

The low ol /px ratio for MMs indicates a high production
rate of pyroxene and thus a more efficient conversion of ol-
ivine into pyroxene (e.g., KURAT, 1988). The lack of very
Fe-poor, refractory element-enriched olivines in MMs points
into the same direction because apparently none of the ol-
ivines escaped processing (annealing and crystal-vapor ex-
change of elements).

Most of the accessory phases in MMs, such as Mg, Al-spinel,
Fe,Al-spinel, perovskite, ilmenite, fassaite, hibonite, and
others, are similar to those found in carbonacecus chon-
drites. Because the MM sample set is much smaller than that
of the CM and CR chondrites, it cannot be expected that all
of the phases present in chondriies have already been detected
in MMs.

None of the MMs investigated so far has an unambiguous
mineral chemical relationship 1o either ordinary chondrites
or achondrites with the possible exception of aubrites (com-
pare 3M4, Fig. 2a,b}. However, all silicates of the coarse-
grained crystalline MMs are (oo rich in FeO (o qualify for
any of the known enstatite meteorites. Such high FeO con-
tents { and correspondingly high MnO contents) indicate ex-
tensive crystal-vapor exchange reactions. Thus, the coarse-
grained crystalline MMs also appear to have experienced
processing similar to that of the isolated mineral grains of
the phyilosilicate MMs. This view is strongly supported by
the presence of tochilinite-like oxides in crystalline MMs.
The voids which are abundantly present in ¢rystalline MMs
arc likely to be the result of dissolution of metals and common
sulfides rather than the exotic sulfides of the enstatite mete-
orite clan. Therefore, 1t appears likely that most of the mi-
cromeieorites belong 10 just one reservoir, The only likely
exceptions are the olivine of M2 { Table 3) and the CK chon-
drite assemblage of M7 {Table 2).

Comparison of the mineralogy and mineral chemistry of
the micrometeorites with those of the SIDPs reveals some
similarities but also some important differences. The major
silicates of the SIDPs are similar to those in MMs—phyilo-
silicates, olivine, and pyroxene. In both cases the phyliosili-
cates form a low-porosity matrix which eventually encloses
grains of anhydrous silicates and other minerals (e.g.,
BROWNLEE et al., 1989). The nature of the phyllosilicatcs,
however, is different: S1DPs are dominated by smectite (e.g.,
BRADLEY, 1988; ZOLENSKY and LINDSTROM, 1991}, while
MMs (and CM and CR chondrites} are dominated by ser-
pentine (e.g., BuncH and CHANG, 1980; BARBER, 1985; Zo-
LENSKY and MCSWEEN, 1988; WEISBERG et al., 1993; Zo-
LENSKY ¢t al., 1993). Only a few SIDPs contain serpentine
{THOMAS et al., 1990). Furthermore, cronstediite is rare in
SIDPs {(RIETMELER, 1992}, but tochilinite is common
(BRADLEY and BROWNLEE, 1991; KLOCK et al., 1992b).

In addition, the anhydrous silicates in SIDPs and MMs
appear to be fundamentally different. In STDPs olivine and
pyroxene form fine-grained porous aggregates {¢.g., BROWN-

LEE, 1987}, or are finely dispersed as small grains within the
phyllosilicate matrix (e.g., BRADLEY et al., 1988). Such ag-
gregates have not been found in the MMs. Another apparent
difference between the SIDPs and MMs is the variety of weird
phases which have been reported from SIDPs: Sa-rich grains,
Al-, Si-, Ti-, Bi-oxides, SiC, phosphidces, Fe-Cr sulfide, and
BaSO4 (MACKINNGON and RIETMEUER, 1984; RIETMEIFER
and MACKINNON, [984a,b, 1985, 1990; RIETMELER, 1985;
RIETMELER and McKAY, 1986). Some, but not all, of these
phases also occur in our MM sample, but they are probably
not indigenous.

Bulk Chemistry

Considering the small masses of the micrometeorites, their
bulk chemical compositions are surprisingly similar to one
another with the least spread exhibited by the phyllosilicate
MMSs. Abundances of refractory, moderately volatile, and
volatile lithophile elements in these MMs { Figs. 5, 6) match,
in general, the abundance patterns of CM chondrites, but
not that of CR chondrites (WASSON and KALLEMEYN, 1988).
In many cases Ca, Na, and Zn are depleted in MMs as com-
pared to CM chondrites, and K and Br are enriched. The
siderophile and chalcophile elements (Figs. 5, 7) are frac-
tionated, except for the refractory elements Os and Ir and,
occasionally, Se. Nickel and Co are depleted in MMs as com-
pared to CI (and CM) chondrites, and Fe, Au, As, and Sb
are enriched. Some of the elemental depletions and enrich-
ments observed for MMs have also been found in SIDPs.
Originally most of these positive and negative deviations from
the chondritic composition, especially those encountered in
SIDPs, were interpreted as being primary (c.g., VAN DER STAP
et al., 1986; FLYNN and SUTTON, 1989, 1990, 1991, 1992a;
SurroN and FLYNN, 1988, 1989, SCHRAMM et al., 1989,
THOMAS et al., 1992). Primary enrichments were assumed,
especially for the volatile elements S, Mn, Cu, Zn, Ga, Fe,
Se, and Br, but also for C, Y, Nb, and Mo. As a conseguence,
SIDPs were considered to be samples of solar nebula matter
enriched in volatile elements, perhaps transitional between
Cl chondrites and cometary matter {e.g., FLYNN and SUTTON,
19922}, However, JESSBERGER et al. ( 1992) showed that most
of these elemental enrichments in SIDPs are the result of
contamination from the terresirial atmosphere, especially
from the E-layer (e.g., HUNTEN et al., 1980; STEINWEG et
al., 1992; KANE and GARDENER, 1993). We belicve that the
same holds true for the micrometeorites. Consequently, the
enrichments of MMs in K, Fe, As, Br, Rb, Sb, and Au, as
compared to CI chondrites, are likely to be of terrestrial at-
mospheric origin (e.g., KURAT et al., 1992a,b, 1993). The
recondensation of Fe is evident from magnetite envelopes
and Fe metasomatism (Figs. 1-3, 8). Also, comparison of
the bulk compositions of particles to their interior compo-
sitions shows surface-related elemental enrichments (Fig. 4).
As the magnetites coating the MMs are also rich in other
elements, they also add to the bulk composition. However,
the abundances of these elements in magnetite are commonly
too low to show up in the butk analyses (with the exception
of Ni).

A secondary enrichment of highly volatile elements in
MMSs is also suggesied by the fact that, especially in the scori-
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FABLE 6:  COMPOSITION OF MAGNETITE COATINGS ON MICROMETEORITES.

Object M2 M3 w4 M4 M4 M4 AMG IMB
lazge plates small octakeda

Si0, 74 5.2 31 6.1 2 22 7.6 3

TiC, <0.1 <01 0.3 02 0.8 0.7 G.3 <@.1
ALO, 58 10 29 s 8.7 8.2 34 21
0, <0.1 <0.1 0.8 05 0.3 04 <01 ©.5
FeQ 76 69 78 75 80.4 80.5 2.4 86.1
MnQO <0.1 <0.1 3.1 11 0.9 0.9 o5 <01
Mz0 7.2 121 74 6.2 4.1 4.1 6.6 6.3
KO 19 36 87 7.7 4.8 - <1 2.5

All analyses by EDS and nommatized to 100 w1%: all Fe as FeQ.

aceous MMs, Na is depleted, but K and other elements which
arc much more volatile than Na are not depleted, Because
the Na contents decrease systematically from unmelied to
scoriaceous MMs to cosmic spherules, this decrease must be
due 1o volatilization during atmospheric heating. For reasons
unkpown to us, Na does not tend 1o recondense onto the
cooled particles at the lower base of the E-layer but stays in
the atmosphere for a prolonged time in the “sodium-layer”
{e.g., GADSDEN, 1968, FERGUSON, 1978; KANE and GAR-
DENER, 1993) and from there it is removed by a mechanism
which must be different from that for most other efements,

Only one element commonly enriched in MMs and SIDPs
over CI levels could represent a primary enrichment: carbon.
There is a common phase rich in C which is of terrestrial
atmaospheric origin (COPS) but PERREAU et al. (1993) es-
ttmate its abundance at only 5% of all C-rich phases en-
countered. This indicates that either the excess Cin MMs is
primary, or that secondary (atmospheric) C-rich phases do
not always form COPS. This problem needs further studies,
which are under way.

The clemental depletions commonly encountered in MMs
and SIDPs have been a mystery for some time. The occa-
sionally low abundances of Ca were considered 10 be a pri-
mary feature of SIDPs (eg, FLYNN and SUTTON, 1989,
1992a; SCHRAMM et al., 1989) and MMs (MAURETTE et al.,
1991, 1992c). However, Ca depletions, together with deple-
tions in Na. S, Ni, and sometimes also Mg and Mn, are typical
of the silicate portion of CM mairices (e.g., SCOTT et al.,
1988; NAZAROY ¢t al., 1993, Fig. 9). This is due to the fact
that these elements preferentialty enter nonsilicate phases such
as carbonates (Ca, Mg, Mn; e.g., BRANDSTATTER ¢t al., 1987,
FREDRIKSSON and KERRIDGE, 1988; JOHNSCN and PRINZ,
1993}, sulfates (FREDRIKSSON et al., 1980; PRESPER ¢t al.,
1993), sulfides, and chiorides, All of these phases form either
large poikitoblasts or fill cracks and therefore are usually ex-
cluded from matrix bulk analysis. Nevertheless, deplctions
in §, Ni, and Zn in SIDPs have been interpreted as being
due to evaperative loss during aimospheric entry heating (e.g..

FLynN and SutTon, 1989, 1992b,c; THOMAS ct al., 1992).
We consider such a mechanism unlikely and have, for similar
depletions observed in MMs, proposed losscs of soluble phases
(carbonates, sulfates, halogenides) from MMs by leaching in
the atmosphere, the ice, and the melt ice water (e.g., KURAT
ct al.,, 1992a,b, 1993; PRESPER ct al.,, 1993).

Magnetite Envelopes

Magnetite envelopes have been noted on SIDPs (e.g.,
THOMAS et al., 1992; KLOCK et al,, 1992b) and were related
to the atmospheric heating event. Such envelopes are com-
monly present around both unmelted and scoriaceous MMs
(e.g., MAURETTE et al., 199}; KURAT et at., 1992a). Their
morphologies (Figs. 3, 8) and chemical compositions ( Table
6, rich in 8i, Al, Mg, Ni) strongly suggest an origin by con-
densation rather than by simple “oxidation of extraterrestrial
objects in the atmosphere,” as suggested by Ropm et al.
(1992). Condensation onto cooling extraterrestrial particles
apparently provides an important sink for the large amounts
of Fe vapor formed by evaporation of meteoroids in the high
atmosphere (c.g., STEINWEG ct al., 1992). The widcspread
occurrence of such magnetite envelopes makes it clear that
this is a common process in the atmosphere. Consequently,
such magnetites (1he first refraciory acromincrals described! )
must have formed throughout geological time, provided the
terrestrial atmosphere was oxidizing to a degree comparable
1o today’s air. Magnetites should, therefore, be present in all
Phanerozoic sediments where they are indeed common (e.g.,
MUTCH, 1966; BROWNLEE, 1985; IWAHASHI et al., 1991).
However, isolated magnctites of platy and octahedrai mor-
phologies similar to those covering micrometeorites have so
far been found only at a few locations and mainly in the
K/T boundary layer {KYTE and SMmIT, [985; RORBIN et al.,
1992). Their presence has been taken as a support of the
impact-induced mass extinction of biota at the K/ T bound-
ary. However, the omunipresence of such magnetites among
micrometeorites considerably weakens that argument.

CONCI.USIONS

Micrometeorites represent the major fraction of the matter
accreting to the Earth 1oday. Particles with sizes between 100
and 400 pm consist mostly of matter similar in mineralogy
and chemical composition to the constituents of CM car-
bonaceous chondrites, with some features also being com-
parable to CR and CI chondrites. However, their proportion
in the total interplanctary dust sample i5 not known mainly
hecause other possible components with nonchondrilic
propertics have not vet been identified. Presumably such a
nonchondritic component is present in the Antarctic dust

FiG. 8. Scanning clectron microphotographs of magnetite envelopes of micremceteorites. (a) Large platy magnetite
cavered by smaller octahedral magnetite at the surface of scoriaccous MM M4, SE image. (b) Magnetiles lining the
walls of an open vesicle at the surface of scoriaceous MM M4, SE image. (¢) High magnification of octzhedral magnetite
with a generation of very small magnetites at the surface of scoriaccous MM M4. SE image. (d) Polished section of
scoriaccous MM 4MS5, showing a highly vesicular melt with relic olivines and pyroxenes (dark grey}. The surface is
covered by granular magnetite (white). Note that the magnetite is present everywhere, independent of the substrate.

BSE image.
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collection and its identification will require a different ap-
proach.

The chondritic component of the dust in the 100-400 pm
size range consists of phyllosilicate-dominated and anhydrous
mineral-dominated unmelted micromeieorites and partly
melted scoriaceous micrometeorites. The fatter ¢learly dom-
inate this size range of Antarctic dust but the proportion of
unmelied phyllosilicate MMs is surprisingly high. Of the total
population of phyllosilicate-rich meteoroids (phyllosilicate
plus scoriaceous MMs, 16 particles}, 38% {by number) sur-
vived atmospheric entry without melting. This is an aston-
ishingly large proportion even considering that most of these
unmelted MMSs were thermally metamorphosed by the fric-
tional heat accompanying atmospheric entry, The survival
of pristine phyllosilicates is less common.

The primary mineral association of chondritic microme-
teorites has probably only a single source. The combination
of phyllosilicates with anhydrous coarse-grained minerals
{olivine and pyroxene) points towards a source similar to
that of CM carbonaceous chondrites, a rare chondrite type
{~2% of all chondrite falls, DODD, 1981). The quantitative
fit is not so good if the mineral proportions and mineral
c¢hemical compositions are considered: micrometeorites have
ol /px ratios of ~1 and olivine and pyroxene compositions
which lack the Fe-poor, refractory element-rich portion
characteristic of CM chondrites. Thus, micrometeorites con-
sist of components, which have experienced similar processing
as those of CM chondrites, but this processing apparentily
was of higher intensity, e.g., solid-gas exchange processes in
the solar nebula proceeded further in the components of MMs
than that of CM chondrites (compare KURAT, 1988). The
differences in mineral abundances and composition are
probabiy pristine. Another obvious difference in mineralogy
is the lack of carbonates and sulfates in MMs, minerals which
are major constituents of CM chondrites. This feature is very
likely of terrestrial origin as sulfates and carbonates were
probabiy lost by dissolution in the ice or meli-ice waler.

The dissolution of soluble phases had some effects on the

bulk chemical compositions of MMs. Depletions of MMs in
Na, Mg, Ca, Mn, Ni, Co, and § are probably the result of
terrestrial leaching of sulfates and carbonates. The chemical
compositions of unmehled MMs are otherwise similar to that
of CM chondrites, including the abundances of diagnostic
volatile trace elements such as Zn and Br. However, some
volatile and other elements are commonly overabundant in
MMs as comparced to CM and CI chondrites. Such enrich-
ments in K, Br, Rb, As, 8b, Au, and also Fe are also likely
of ferrestrial origin. These eclemenis probably recondensed
from meteoric vapors in the atmospheric E-layer. In partic-
ular, the condensation (and metasomatic infiltration) of Fe
(diluted by some elements like Si, Al, Ni) is documented in
Fe-rich rinds and magnetite envelopes around most micro-
meteorites. Although some enrichment of MMs in C is visible
in the deposits of COPS in voids and at the surface, the source
of the overall large enrichment in C is not known. The C-
rich nature of MMs (and SIDPs) could therefore be a primary
feature. Studies of MMs should also be of interest to terrestrial
atmosphere rescarch because they carry information on their
interaction with the terrestrial atmosphere at high and low
temperature.
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