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Abstract—-Nineteen nonporphyritic pyroxene and pyroxene/olivine chondrules, chondrule
fragments, and irregular objects were studied from two equilibrated chondrites, the ordinary
(L/LL5) Knyahinya chondrite and the Rumuruti type (R4) Ouzina chondrite. Major element
contents for almost all objects in the chondrites are disturbed from their chondritic ratios,
most probably during metamorphic re-equilibration. However, the volatile elements
(Na,O + K,0) in Ouzina scatter around the CI line, probably the result of being generated
and/or processed in different environments as compared with those for Knyahinya. All
studied objects from Knyahinya and Ouzina possess systematically fractionated trace element
abundances. Depletion of LREE with respect to HREE and ultra-refractory HFSE
documents variable degrees of LREE transport into an external mineral sink and restricted
mobility of most of the HREE and HFSE. Moderately volatile elements preserve volatility-
controlled abundances. Strongly fractionated Rb/Cs ratios (up to 10x CI) in all studied
objects suggest restricted mobility of the large Cs ion. All studied objects sampled and
preserved Y and Ho in solar proportions, a feature that they share with the nonporphyritic
chondrules of unequilibrated ordinary chondrites.

INTRODUCTION

Chondrules are millimeter- to micrometer-sized
spherical silicate objects that are the most abundant
components of most chondritic meteorites (e.g., up to
75% by mass). These droplet-shaped objects, that have
been at least partly liquid during the course of their
histories (“fiery rain” of Sorby 1877; “droplet
chondrule” of Gooding and Keil 1981), preserved
extreme compositional (chemical and isotopic) diversity.

Based on their textures, chondrules can be divided
into two groups: porphyritic and nonporphyritic.
Porphyritic chondrules consist mainly of olivine or
pyroxene phenocrysts, or a mixture of both minerals, in a
fine-grained or glassy silicate matrix, whereas the
nonporphyritic ones have various textures, including
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granular olivine-pyroxene (GOP), radial pyroxene (RP),
and crystocrystalline (C) (Gooding and Keil 1981).
Barred-olivine (BO) chondrules are considered to be
special kinds of porphyritic chondrules (e.g., Gooding and
Keil 1981); however, they possess certain characteristics
(e.g., platy textures indicating rapid crystallization from a
liquid) that warrants their distinction from other
porphyritic chondrules. Although researchers have
studied chondrules for decades, much less attention has
been paid by geochemists to nonporphyritic chondrules as
compared with porphyritic ones.

This is a petrographic and chemical (major and
minor trace element analyses) study of nonporphyritic-
textured objects (e.g., pyroxene/olivine chondrules,
chondrule fragments, irregular objects) and barred-
olivine (BO) chondrules in two chondrites: Knyahinya

© The Meteoritical Society, 2012.



1538

and Ouzina. Knyahinya is classified as an L/LL5
ordinary chondrite (e.g., Jarosewich 1990) and Ouzina is
a Rumuruti type (R4) chondrite (Grossman 2000). All the
common textural types of chondrules are observed in LL
chondrites, but in R chondrites the nonporphyritic types
are relatively rare (approximately 2-4%, e.g., Rubin
2010; Bischoff etal. 2011). R chondrites, Pecora
Escarpment (PCA) 91002, and Acfer 217 are exceptions,
where nonporphyritic chondrules constitute 10% and
8%, respectively (Kallemeyn et al. 1996), which is only
slightly lower than their abundance in ordinary
chondrites (approximately 15%, Gooding and Keil 1981).

The Van Schmus and Wood (1967) classification
scheme for chondrites links the degree of chemical
homogenization of the major silicates to the degree of
recrystallization (e.g., metamorphism). Petrologic types
4-6, which comprise the equilibrated ordinary chondrites
(EOCs), including Knyahinya, exhibit moderate (type 4)
to strong (type 6) metamorphism, and corresponding
alteration of their textural and chemical features.

In particular, enhanced solid-state diffusion of the
major cations (Mg> " and Fe? ") at elevated temperatures
has led to ‘equilibration” (homogenization) of the
chemical compositions of the major minerals such as
olivine and pyroxene in most equilibrated chondrites. In
contrast, in type 3 or unequilibrated ordinary chondrites
(UOCs), metamorphism and alteration are minor to
negligible and pristine compositions are preserved,
whereas in types | and 2 chondrites, aqueous alteration
has occurred at low temperatures (approximately 100° C)
(e.g., Scott 2007).

An estimate of the thermal conditions under which
metamorphism took place in equilibrated chondrites can
be made by studying chemical exchange between
minerals. Based on Fe-Mg exchange between olivine and
spinel, Kessel et al. (2007) found that the average
equilibration temperatures (the lowest temperature for
solid-state diffusion) for a suite of H, L, and LL
ordinary chondrites of petrologic types 4-6, cover a
narrow range between 586 and 777 °C as compared with
previous determinations of metamorphic temperatures
(e.g., <600-950 °C, Heyse 1978). For R4-5 chondrites,
olivine-chromite geothermometry indicates equilibration
temperatures of 550-690 °C (Wlotzka 2005). Because
secondary processes (e.g., thermal events) contribute to
the modification of primary features, it is important to
understand the relationship between the primary
indicators of petrographic type (e.g., texture and
chemical composition of phases) and the conditions
under which formation and/or re-equilibration of
elements could have taken place.

Here, petrographic and chemical (major and minor
trace element analyses) data for silicate phases in
nonporphyritic chondrules, chondrule fragments, and
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related objects in Knyahinya and Ouzina are examined
to elucidate the extent to which chemical composition of
these objects reflect primary as opposed to secondary
processes. This evaluation is enhanced through
comparison of the new data for Knyahinya and Ouzina
with the chemical compositions of nonporphyritic
chondrules from UOCs (Engler etal. 2007). The
preserved geochemical characteristics of the studied
objects can help to reveal differences between the
environments in which Knyahinya and Ouzina were
generated and/or processed.

Preliminary trace element patterns for some
Knyahinya and Ouzina objects were published in Engler
et al. (2004).

SAMPLES AND ANALYTICAL METHODS

Thirteen chondrules and other objects were analyzed
in polished thin and thick sections in L/LL5 Knyahinya
(from A763/B) and six objects in R4 Ouzina (N 2155).
All samples belong to the Natural History Museum
(NHM) in Vienna. Abbreviations of sample names used
throughout this paper are as follows: KN = Knyahinya
and OZ = Ouzina.

Analytical Techniques

Objects were selected for chemical analysis using an
optical microscope and a scanning electron microscope.
Major element chemical compositions were obtained
with a JEOL 6400 analytical scanning electron
microscope (ASEM) (NHM; Vienna) and a CAMECA
SX100  electron  microprobe  (Department  of
Lithospheric Science, University of Vienna). Electron
microprobe analyses (EMPA) were performed at 15 kV
acceleration potential and 15 nA sample current.
Natural and synthetic standards were wused for
calibration. Scan widths of approximately 7.5 x 10 pm
were made over several nonoverlapping areas with total
dimensions of 80 x 80 um and averaged to give
estimated bulk compositions. In addition, major
element contents of silicate phases were measured by
ASEM and EMPA using finer beam sizes. A problem
with rastered beam analyses is that the ZAF corrections
for the bulk composition may be different from those in
the individual minerals present. This is probably a
minor problem when only silicates, are involved, but
can lead to errors when phases with greatly different
densities, such as metal and sulfide, are present. While
the latter phases occur in minor and trace amounts in
the studied samples, the lack of corrections based on
density differences (Warren 1997; Berlin et al. 2008)
could reduce the accuracy of the bulk eclemental
contents.
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The bulk trace element contents of the chondrules
and other objects, as well as trace element contents of
individual silicate phases within each object, were
measured with a VG Plasma Quad I+ “S” ICPMS and
a 266 nm Q-switched Nd-YAG laser at the Memorial
University of Newfoundland (for a detailed description
of the system see Jackson et al. 1992; Jenner et al. 1993;
Jackson 2001). The laser was pulsed at a frequency of
10 Hz, with an energy of 0.3-0.4 mJ per pulse. The first
40 s of each measurement were acquired with the laser
off to determine the background count rates for each
analysis. The sample was then ablated for 50-80 s,
depending on the stability of the acquired signals and the
thickness of the mineral in the section. Ablation pit
diameters ranged between 10 and 40 pm (usually 40 pm),
depending on the area of interest and/or the object size.
For bulk analyses of the objects, either a 100 x 100 um
box raster or 40 x 100 um line scan was used, depending
on the grain size and homogeneity of chondrules and
fragments. Engler et al. (2007) presented the detailed
conditions under which trace element analyses were
performed, as well as a description of the standardization
procedure and an estimate of the accuracy of the
analytical method.

It should be kept in mind that in situ methods for
obtaining bulk analyses of micro-objects in thin/thick
sections using ASEM, EMPA, and LA-ICP-MS must
assume that the volume analyzed is representative of
the whole object, particularly as we are analyzing
three dimensional objects with spots selected using two
dimensional images of the sections. Although we tried
to measure the true bulk value by making rasters or
scans over representative areas, depending on the
homogeneity and grain size of each individual object,
the bulk analyses by ASEM, EPMA, and LA-ICP-MS
should be considered as the best approximation that

we could obtain for the actual bulk elemental
contents.
RESULTS
Petrography
This study was focused on nonporphyritic

chondrules, chondrule fragments, and related objects.
The diameters of the analyzed objects range from about
180 pm to 2 mm. Shapes of objects vary between well
rounded (spherical to ellipsoidal) and irregular. Based on
these variations, the objects were divided into the
following four groups (using the same nomenclature as
in Engler et al. 2007): (i) chondrules (C); (ii) chondrule
fragments (CF); (ii1) irregular objects (IO), which have
textures similar to those of chondrules but do not show
any evidence of ever having been part of a spherical
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object; and (iv) unclassified objects (U), which are
texturally and/or compositionally distinct from
nonporphyritic chondrules, e.g., with crystals up to
80 um or objects containing large amounts of metal and
sulfide.

The dominant silicate phases of the different objects
are olivine, low-Ca pyroxene, high-Ca pyroxene, and
glass or devitrified glass. Plagioclase is subordinate.
Metal and sulfides, which usually occur in minor to trace
amounts inside the objects, are Ni-Fe (kamacite, taenite,
with subordinate tetra-taenite) and troilite. Accessory
phases are chromite and apatite. The principal
petrographic characteristics of all studied objects are
summarized in Table 1.

Major Textures

Most of the objects are nonporphyritic chondrules
with mainly granular, fibrous, platy (fine and coarse), or
subordinated dendritic textures (Table 1; Figs. la—e). In
some objects, there are transitions between fibrous and
granular textures (depending on the section plane, e.g.,
KN17), as well as fibrous and platy textures (depending
on the size of the fibers/plates). In others, fibrous and
granular-platy shapes are present (e.g., OZ4, OZS5;
Figs. le—f).

A special feature occurs in KN3, as the barred
olivine object contains a large apatite crystal enclosed by
the olivine bars (Fig. 1c). In KN21 the core shows
different composition and texture compared with the
major part of the object. Coarse-grained metal and
sulfides occur, as well as chromite and apatite,
overgrown by the major part of the chondrule.

Chemical Composition of Individual Phases

Representative analyses are listed in Table 2. The
results may be summarized as:

Olivine

Elemental abundances of olivine in objects of
Knyahinya and Ouzina show a narrow range for major
elements, with Fo;3 76 and Fogg ¢, respectively.

Low-Ca Pyroxene

There is almost no variation in the major element
composition of low-Ca pyroxene in objects of the
equilibrated chondrites, where pyroxenes with En,4 774
occur.

High-Ca Pyroxene

Augite-diopside occurs with a maximum wollastonite
component of Wosp;. Titanium contents reach a
maximum of 0.8 wt%, Cr,O; and MnO contents are up
to 1 and 0.7 wt%, respectively. Contents of Al,O5 differ
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Fig. 1. Backscattered electron images of objects with a) radial pyroxene and platy-granular texture (KN17), scale: 100 um; b)
platy-granular texture (KN21). The core differs in texture and composition from the major object, scale: 100 pum; c) barred olivine
with coarse platy texture (KN3) with a large apatite, scale: 100 pm; d) radial olivine-pyroxene texture (OZ1), scale: 100 pum; ¢)
granular-platy texture, scale: 100 pm; f) granular-fibrous texture (OZ5), scale: 100 pum.

between the two chondrite types: in Knyahinya objects,
they reach a maximum of 1.1 wt%, but are as high as
4.7 wt% in Ouzina objects.

Devitrified Glass

Glass in Knyahinya objects show a turbid aspect and
contain between 61 and 67 wt% SiO», 15-23 wt% Al,Os;,
6-9 wt% Na,0, and 2-4.7 wt% CaO. Object OZS is the

only one in Ouzina with glass; it is a very Si-rich (88.8
wt%) mesostasis glass associated with crystals of
plagioclase.

Plagioclase

Plagioclase occurring in Knyahinya and Ouzina
objects is albite-oligoclase with Abg;_ g3 and Abys_go,
respectively.
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Table 2. Representative EMP analyses of olivine, low-Ca and high-Ca pyroxene, glass, and plagioclase in wt%.
KNYAHINYA-olivine
Object KNI KNI (rim) KN2 KN2 (rim) KN3 KN6 KN7 KNI2 KNI5 KN17
Si0, 39.2 38.4 38.6 38.4 38.4 39.1 38.8 38.4 38.5 36.4
TiO, b.d. b.d. 0.03 0.03 0.05 b.d. 0.03 0.04 0.04 b.d.
AlL,O3 b.d. b.d. b.d. 0.10 b.d. 0.28 b.d. b.d. b.d. b.d.
Cr,05 b.d b.d. b.d. 0.49 0.09 b.d. b.d. b.d. b.d. b.d.
FeO 21.8 22.2 22.1 22.3 22.3 22.6 22.8 22.2 22.8 23.3
MnO 0.46 0.48 0.48 0.48 0.44 0.49 0.46 0.46 0.48 b.d.
MgO 39.3 39.5 38.4 38.1 39.2 37.8 37.5 38.1 38.5 35.7
TOTAL 100.7 100.6 99.5 99.9 100.5 100.3 99.5 99.1 100.2 95.3
XFA 0.24 0.24 0.24 0.25 0.24 0.25 0.25 0.25 0.25 0.27
XFO 0.76 0.76 0.76 0.75 0.76 0.75 0.75 0.75 0.75 0.73
OUZINA-olivine
Object 0zZ1 072 0z4 0Z5 0Z6 0Z8
Si0, 36.2 36.3 36.1 36.5 36.1 36.2
TiO, 0.08 0.02 0.03 0.03 b.d. 0.06
Al,O3 b.d. b.d. b.d. 0.26 b.d. b.d.
Cr,053 0.07 0.08 0.05 0.05 0.1 0.03
FeO 33.8 33.7 33.5 33.4 33.6 33.7
MnO 0.40 0.42 0.42 0.42 0.4 0.43
MgO 28.5 28.8 28.6 27.9 29.2 29.0
NiO 0.22 0.23 0.24 0.17 0.2 0.20
TOTAL 99.27 99.58 98.96 98.8 99.7 99.6
XFA 0.40 0.40 0.40 0.40 0.39 0.39
XFO 0.60 0.60 0.60 0.60 0.61 0.61
KNYAHINYA low-Ca pyroxene
Object KNI1 KN2 KNo6 KN7 KNS KN9 KNI12 KNI3 KNI5 KNI16 KNI17 KN21
Si0, 56.1 55.9 56.3 56.1 56.4 56.3 56.0 54.4 55.8 56.0 55.0 56.5
TiO, 0.1 0.11 0.1 0.17 0.12 0.1 0.12 0.26 0.15 0.13 0.11 0.11
Al,O3 0.1 0.13 0.1 0.16 0.17 0.2 0.10 0.39 0.12 0.13 0.35 0.12
Cr,03 0.1 0.06 0.1 0.11 0.08 0.2 0.03 1.05 0.16 0.10 0.11 0.11
FeO 13.9 14.0 14.2 14.1 14.3 12.6 13.5 14.1 14.2 13.9 13.3 14.1
MnO 0.5 0.51 0.5 0.50 0.46 0.5 0.52 0.47 0.51 0.49 0.49 0.52
MgO 28.5 27.7 28.0 28.3 27.1 28.0 28.7 27.8 27.9 28.7 28.8 27.6
CaO 0.6 0.81 0.7 0.58 0.56 3.5 0.68 0.87 0.64 0.77 1.22 0.68
Na,O b.d. 0.03 b.d. b.d. 0.03 0.1 b.d. 0.10 b.d. 0.05 0.08 b.d.
K,0 100.0 99.3 99.9 100.0 99.3 101.4 99.7 99.5 99.56 100.2 99.5 99.7
TOTAL
WO 1.15 1.60 1.35 1.13 1.12 6.66 1.32 1.71 1.26 1.49 2.34 1.35
EN 77.00 76.06 76.29 76.71 75.72 74.01 77.41 75.94 76.19 76.89 76.97 76.11
FS 21.86 22.35 22.36 22.16 23.16 19.33 21.27 22.35 22.56 21.62 20.69 22.55
JD 0.07 0.21 0.07 0.07 0.22 0.00 0.14 0.00 0.00 0.35 0.00 0.07
KNYAHINYA high-Ca pyroxene
Object KN2 KN6 KNS KN9 KNI5 KN21
Si0, 52.6 53.4 55.2 57.2 53.1 54.5
TiO, 0.5 0.6 0.2 0.5 0.8 0.5
Al,O4 0.8 0.8 0.9 1.1 0.9 0.9
Cr,03 0.8 1.0 0.5 0.9 0.9 0.6
FeO 5.9 5.9 4.1 4.8 53 5.4
MnO 0.4 0.3 0.2 0.7 0.7 0.1
MgO 17.3 16.1 15.5 12.3 14.7 14.5
CaO 20.6 20.6 22.8 21.7 22.0 22.2
Na,O 0.1 0.1 0.2 b.d. 0.2 0.4
K,0 0.3 0.3 0.2 0.3 0.6 0.5
TOTAL 99.4 99.2 99.8 99.6 99.1 99.6
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Table 2. Continued. Representative EMP analyses of olivine, low-Ca and high-Ca pyroxene, glass, and plagioclase

in wt%.

KNYAHINYA high-Ca pyroxene

Object KN2 KN6 KN8 KN9 KNI5 KN21
WO 41.48 43.08 47.71 50.33 46.68 47.57
EN 48.53 46.72 45.23 39.77 43.46 43.25
FS 9.99 10.20 7.06 9.90 9.86 9.18
ID 0.00 1.05 1.20 0.00 1.21 2.64
OUZINA high-Ca pyroxene

Object 0z1 0z72 0z4 0zs5 0Z6 0Z8
SiO, 51.8 54.2 53.8 53.7 52.5 55.0
TiO, 0.44 0.05 0.11 0.5 0.13 0.5
AlLO; 3.0 0.35 0.38 3.7 0.75 4.7
Cr,03 0.42 0.69 0.46 1.0 0.58 0.2
FeO 7.8 6.8 7.2 6.3 7.9 6.3
MnO 0.16 0.15 0.17 0.1 0.14 0.2
MgO 14.2 15.7 15.0 13.6 16.2 12.9
CaO 22.1 22.6 22.1 20.6 21.7 19.0
Na,O 0.70 0.55 0.47 1.2 0.58 1.5
K,0 b.d. b.d. b.d. 0.1 b.d. 0.1
TOTAL 100.7 101.1 99.7 100.8 100.4 100.4
WO 45.98 45.22 45.39 46.34 43.01 45.18
EN 41.13 43.84 42.81 42.43 44.62 42.76
FS 12.89 10.94 11.80 11.23 12.37 12.06
ID 5.00 0.00 3.37 9.16 0.00 11.60
KNYAHINYA-devitrifed glass OUZINA-glass
Object KN3 KN7 KN8 KNI16 KN17 KN21 0Z8

SiO, 61.3 65.1 66.8 63.6 66.0 66.5 88.8

TiO, 0.4 0.1 0.06 b.d. 0.06 0.1 b.d.

AlLO; 20.4 19.8 20.7 15.0 19.6 18.7 b.d.

Cr,03 0.5 b.d. 0.06 0.2 0.06 0.2 b.d.

FeO 2.3 1.0 1.07 43 1.01 2.3 0.71

MnO 0.1 b.d. b.d. 0.1 0.03 b.d. 0.04

MgO 1.4 1.8 1.61 8.2 1.53 4.4 0.20

CaO 29 3.5 4.0 1.8 4.7 2.7 0.57

Na,O 9.2 8.2 5.9 7.5 6.1 54 b.d.

K,0 0.5 0.8 0.84 0.2 0.45 0.7 b.d.

TOTAL 99.0 100.3 101.0 100.8 99.6 101.0 90.3
KNYAHINYA-plagioclase

Sample KNI1 KN2 KN6 KN13
SiO, 66.9 66.2 64.7 64.1
TiO, b.d. 0.03 b.d. 0.1
AlLO; 22.8 20.9 20.7 19.2
FeO 0.8 0.72 1.8 1.7
MnO b.d. 0.03 0.1 0.1
MgO 0.5 0.12 2.5 2.2
CaO 2.1 1.98 2.3 2.8
Na,O 6.7 10.1 8.2 9.6
K,0 0.6 0.46 0.9 0.4
TOTAL 100.4 100.5 101.1 100.0
AB 81.30 87.80 81.80 84.30
AN 13.80 9.50 12.50 13.70
OR 4.90 2.60 5.70 2.10
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Table 2. Continued. Representative EMP analyses of olivine, low-Ca and high-Ca pyroxene, glass, and plagioclase

in wt%.

OUZINA-plagioclase

Sample 0z1 0Z72 0z4 0Z5 0Z6 0Z8
SiO, 64.9 64.1 62.4 61.3 62.3 65.7
TiO, b.d. 0.06 0.02 0.11 b.d. b.d.
Al O4 22.5 19.8 21.0 18.8 21.7 21.8
FeO 1.08 1.34 0.76 2.6 1.27 0.96
MnO 0.02 0.03 b.d. 0.02 0.03 b.d.
MgO 0.04 1.33 0.14 2.8 0.09 0.02
CaO 3.0 4.3 1.66 4.9 34 2.5
Na,O 9.7 9.0 12.6 8.2 10.2 9.7
K,0 0.52 0.98 0.92 0.38 1.11 0.65
TOTAL 101.8 100.9 99.4 99.1 100.2 101.4
AB 82.80 75.00 89.20 73.50 79.60 84.10
AN 14.30 19.60 6.50 24.30 14.70 12.20
OR 2.90 5.40 4.30 2.20 5.70 3.70
Reference: b.d. = below detection limit.
Bulk Major and Minor Element Composition anomalies. LREE show variable but smooth

Major element compositions of objects from
Knyahinya are similar to the mean value of the
nonporphyritic objects (Table 3) in UOCs (Engler et al.
2007). SiO, contents range from 41 to 59 wt%, Al,O3
contents from 2 to 4 wt%, FeO contents from 11 to 20
wt%, MgO contents from 19 to 34.5 wt%, and CaO
contents from 1 to 7.6 wt%. The objects from Ouzina
have higher FeO contents than the Knyahinya objects,
up to 38 wt%, and lower MgO contents, from 12 to 19
wt% (Table 3, Fig. 2a). CaO contents range from 1.6 to
11 wt%. In two objects, OZ8 and OZ5, Al,O; contents
are anomalously high, reaching 7 to 9 wt%. The mean
values for CaO and Al,O; in all Ouzina objects are
clearly higher than in the objects of Knyahinya (Fig. 2a),
with CaO + Al,Os contents showing some variation
depending on the glass/feldspar ratio of the objects. In
Knyahinya, 4 of 13 analyzed objects contain Na,O > 1
wt% (KNI, KN2, KN3, KN7). In Ouzina objects, the
Na,O content is highly variable and reaches a maximum
of 3.9 wt% (Fig. 2b).

Bulk Lithophile Trace Element Composition

Normalized abundances of objects having similar
trace element patterns are plotted together in the same
diagram.

Knyahinya Objects

Objects KN1, KN6, KN8, KN9, KN13, and KN16
(Table 4, Fig. 3a) have strongly fractionated refractory
lithophile trace element abundance patterns with strong
negative Y anomalies, and positive U, Ta, and Nb

fractionations relative to CI chondrites in most objects:
In KNI and KN13 abundances decrease smoothly from
La to Sm, whereas in KN9, KN8, and KN16 they show
a smooth increase, and no fractionation in KN6. A
positive Eu anomaly is present in all samples, but this
anomaly is larger in objects KN1 and KN13 compared
with the others. The more refractory of the volatile
elements (Sr, Ba) as well as the moderately volatile
elements (Mn, V, and Cr) are unfractionated from CI
abundances except for Cr abundances in KN9 and KNG,
which are depleted relative to moderately volatile
elements. In most objects, the elements Rb and Cs are
depleted relative to other moderately volatile elements.

The objects KN2, KN7, KN12, KN16, KN17, and
KN21 are plotted together in Table 4 and Fig. 3b. Two
analyses were made of KN17, one of the barred olivine
portion of the object (KN17-BO), and another of the
barred pyroxene portion of the object (KN17BPx). The
trace element patterns of these objects are somewhat
similar to those described above. All show a pronounced
negative Y anomaly and a positive U anomaly, but do
not have positive Th and Nb anomalies. The more
refractory as well as the moderately volatile elements, Sr,
Ba, Mn, and V are nearly unfractionated with respect to
CI concentrations, and abundances decrease with
increasing volatility for Cr, Rb, and Cs (except for KN2,
which has a negative Cr anomaly).

The barred olivine objects KN15 and KN3 (Table 4,
Fig. 3c) have distinctive trace element abundance
patterns that differ from the other Knyahinya objects.
For KNI15, in addition to the bulk analyses, glass was
also analyzed (Fig. 3c). The glass shows an enrichment
of Sc and Ca relative to the other elements, but lacks the
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Table 3. Bulk major element composition of individual objects in equilibrated ordinary and Rumuruti chondrites.

Knyahinya
Chondrite object KNI KN2 KN3 KN6 KN7 KN8 KN9 KNI2 KNI3 KNI5 KNI6 KNI7 KN21
SiO, 52.4 41.0 46.7 504  51.5 59.1 56.8  56.0 52.2 49.6 57.5 55.1 56.6
TiO, 0.13 0.03 0.08 0.3 0.1 0.3 0.3 0.3 0.3 0.4 0.1 0.2 0.3
Al,O4 2.7 1.88 2.30 2.4 2.4 2.7 2.4 2.7 2.1 4.0 2.1 2.2 2.6
Cr,03 0.25 0.06 1.72 0.4 0.2 0.2 0.5 0.6 0.7 0.5 0.4 0.6 0.7
FeO 14.2 20.3 17.2 16.3 16.5 11.6 11.0 13.7 18.0 154 13.9 14.4 15.1
MnO 0.40 0.45 0.43 0.4 0.4 0.5 0.4 0.4 0.6 0.5 0.3 0.2 0.3
MgO 254 34.5 29.9 21.7 233 192 193 21.7 22.0 22.6 20.4 21.2 20.4
CaO 2.6 1.11 1.84 7.1 2.6 5.5 7.6 3.5 1.2 4.6 3.9 4.6 2.6
Na,O 1.23 1.19 1.21 0.3 1.5 0.1 0.8 0.3 0.5 0.6 0.4 0.2 b.d.
K->0 0.07 0.03 0.05 0.2 0.1 0.1 0.2 0.2 0.1 0.3 0.2 0.3 0.3
P,0s5 0.03 0.09 0.06 0.3 0.1 0.2 0.2 0.1 0.0 0.4 0.1 0.1 0.2
NI 0.24 0.03 0.08 0.1 0.2 0.2 0.2 0.2 0.5 0.3 0.1 0.4 0.2
Total 99.6 100.6 101.6 999 989 99.7 99.7 99.7 98.2 99.2 99.4 99.5 99.3
Ouzina
Chondrite 0zl 072 0Z4 0Z5 0Z6 0Z8 0Z9
SiO, 41.3 43.9 51.3 48.8 39.5 41.3 38.1
TiO, 0.3 0.2 0.4 0.4 0.3 0.4 0.2
Al,O4 3.9 1.6 4.5 8.7 1.4 7.4 1.1
Cr,03 0.4 0.6 0.5 0.8 0.5 0.7 0.4
FeO 314 28.8 16.7 13.1 32.2 24.7 38.3
MnO 0.5 0.5 0.5 0.4 0.3 0.6 0.4
MgO 18.6 18.4 13.1 11.9 19.4 15.7 17.4
CaO 1.6 5.0 11.0 10.9 4.5 3.7 2.8
Na,O 0.8 0.1 0.8 3.9 0.2 3.7 0.2
K->0 0.2 0.1 0.5 0.5 0.2 0.4 0.2
P,0s5 0.2 b.d. 0.2 0.2 0.4 0.3 0.2
NI 0.1 0.4 0.2 0.2 0.2 0.6 0.4
Total 99.3 99.6 99.7 99.8 99.1 99.5 99.6

Reference: b.d. = below detection limit.

positive U anomaly that is present in the bulk object. In
the bulk object the negative Y anomaly is also present,
which seems to be characteristic of Knyahinya objects.
The moderately volatile elements show a tendency for
decreasing abundances with increasing volatility.

The barred olivine chondrule KN3 is exceptional
because it contains a large apatite crystal. The trace
element contents of the barred olivine and the enclosed
apatite crystal in KN3 (Fig. 3d) show complementary
patterns, that are strongly fractionated. The apatite
crystal hosts Y as well as REE, except for Eu. The
barred olivine portion of the chondrule hosts the more
refractory lithophile elements and most of the
moderately volatile elements.

Ouzina Objects

Refractory lithophile trace element (including REE)
abundances of all objects in Ouzina (except for OZS, the
barred olivine object) vary between 0.7 and 10x CI and
show a very similar fractionation pattern (Table 4,
Fig. 4a). The LREE are usually depleted relative to the

more refractory elements, but to a lesser extent than in
the objects from Knyahinya. The HREE show a smooth
continuous increase from Gd to Lu, with generally only
a slight or no Eu anomaly (slight negative Eu anomalies
occur in objects OZ4, OZ5, and OZ6). Y and Th
anomalies are the most common. The moderately
volatile elements are fractionated with a slight trend to a
volatility-dependent ~ depletion.  Strontium and Ba
commonly have the same abundance levels compared
with the other elements. Mn is depleted relative to other
moderately volatile elements in the majority of objects
and Rb is enriched only in OZS8, OZ2, OZ4, and OZ5.

The normalized elemental contents of the barred
olivine object OZ8 are plotted with the coexisting glass in
Fig. 4b. The elemental abundances of the barred olivine
object are about 4-5x CI and those of the glass about
10x CI. Refractory lithophile trace elements including
the REE have relatively flat patterns. The moderately
volatile elements Mn, V, Cr, Rb Cs, and W are depleted
relative to the refractory elements in the olivine and
glass, but with positive V and Rb anomalies.
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Fig. 2. a) Bulk compositions of Knyahinya and Ouzina objects
projected onto the (CaO + Al,O3) — MgO — FeO planes. In
addition, the bulk content of Orgueil is plotted as a primitive
reference material (Anders and Grevesse 1989). b) Bulk
contents of alkalis (Na,O + K,O) versus Al,O; compared with
the corresponding Cl abundance ratio (Anders and Grevesse
1989). The bulk contents of nonporphyritic chondrules of
Richardton (Evensen et al. 1979) and Bachmut (Kurat et al.
1987) are shown for comparison.

DISCUSSION

Rumuruti (R) chondrites have mineralogical,
geochemical, and isotopic characteristics that distinguish
them from carbonaceous, ordinary, and enstatite
chondrites (e.g., Rubin and Kallemeyn 1989; Bischoff
et al. 1994, 2006, 2011; Schulze et al. 1994; Kallemeyn
et al. 1996). In particular, they are more oxidized than
perhaps any other chondrite group (e.g., Schulze et al.
1994). Evidence for the high state of oxidation includes
negligible amounts of metallic Fe-Ni, a high abundance
of NiO-bearing olivine, and the presence of abundant
hornblende and minor biotite (e.g., Mikouchi et al. 2007;
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McCanta et al. 2008). The whole rock A'’O value is the
highest of any chondrite group (Schulze et al. 1994;
Greenwood et al. 2000).

Most R chondrites (except Carlisle Lake, Weisberg
et al. 1991) are brecciated and contain equilibrated R5 and
R6 clasts (Kallemeyn et al. 1996; Bischoff et al. 2006,
2011). Many are regolith breccias showing light/dark
structure and solar wind implanted rare gasses (Weber and
Schultz 1995). They are characterized by moderate
abundances of volatile elements, a low chondrule/matrix
modal abundance ratio, rather small chondrules
(approximately 400 um in apparent diameter), and scarce
refractory inclusions (e.g., Rubin and Kallemeyn 1989;
Weisberg et al. 1991; Bischoff et al. 1994, 2011; Schulze
et al. 1994; Greenwood et al. 1996; Kallemeyn et al. 1996).

R chondrites share several geochemical features (e.g.,
contents of moderately volatile elements Na and Mn) with
ordinary chondrites (OCs) (Bischoff et al. 2011), but some
of their chemical characteristics do not follow the H-L-LL
sequence (Rubin and Kallemeyn 1989). Also, the high
abundance of matrix material and contents of Zn and Se
in R chondrites resemble that of carbonaceous chondrites
(CCs) more closely than OCs (e.g., Bischoff et al. 1994).
On the other hand, the oxygen isotopic composition of
chondrules in R chondrites and OCs show a stronger
relationship than that between R chondrites and CCs (Isa
et al. 2011). Nonetheless, small but significant differences
in oxygen isotopes between R and OCs exclude formation
of R chondrites from OCs simply by oxidation (e.g.,
Schulze et al. 1994).

The existing data therefore suggest that R chondrites
are formed in an environment similar to, but somewhat
different than, OCs. Here, we explore the differences
between R chondrites and OCs further, by examining the
chemical data for nonporphyritic chondrules and related
objects in Ouzina and Knyahinya.

Most chondrules in equilibrated chondrites have
been modified by secondary processes such as
interactions between the chondrule and nebular gas (e.g.,
replacement of olivine by pyroxene and vice versa) and
aqueous alteration or thermal metamorphism on their
parent bodies (e.g., Kurat 1969; McSween and Labodka
1993; Huss et al. 2006). These processes tend to
obliterate primary mineralogical features through, for
example, the activation of exchange reactions. These
reactions are present in equilibrated chondrites but they
can be best identified or expected to be preserved only
where the reactions remained incomplete, as in the case
of the least altered, unequilibrated ordinary chondrites.
In equilibrated chondrites, an examination of secondary
processing must rely more on geochemical data.

In the following paragraphs we explore the question:
Do the nonporphyritic objects in the equilibrated
Knyahinya and Ouzina chondrites preserve geochemical
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Fig. 3. Bulk (a—c) and glass-mineral (c—d) analyses of lithophile
trace elements normalized to Cl abundances (here and in the
following graphs normalizing data were taken from Lodders
and Fegley 1998) in objects of the equilibrated Knyahinya
chondrite. The bulk Knyahinya trace element abundance
(Bulk) (Kallemeyn et al. 1989; Friedrich et al. 2003) is shown
for comparison.
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characteristics that reveal differences between the
environments in which they were generated and/or
processed?

Major Element Systematics

Major element trends on binary element plots for
nonporphyritic chondrules and related objects from
Knyahinya and Ouzina deviate from CI chondritic ratios
(solar abundance ratio line) (Fig. 5). This is most
probably due to disturbance of the primary compositions
by secondary processes (e.g., Fe?" exchange reactions or
addition of alkalis) during re-equilibration of the
chondrite.

The Knyahinya and Ouzina objects tend to be
enriched in calcium relative to the CaO/Al,O; CI
chondritic ratio (Fig. 5a), which is preserved in most
nonporphyritic objects from UOCs (Engler et al. 2007).
As mentioned above, the mean values for CaO + Al,O3
in all Ouzina objects are higher than in the objects of
Knyahinya (Fig. 2a). The variations of CaO and Al,O3 in
the objects are probably a function of their glass/feldspar
ratio, formed prior to secondary processing. All objects of
Knyahinya are depleted in iron relative to CI chondritic
ratio of FeO/Al,03, similar to the primary ratios of some
objects in UOCs (Fig. 5b). In contrast, the large scatter of
FeO/Al,O5 in the Ouzina objects likely reflects secondary
processing during which FeO was variably added at the
expense of Mg during metasomatic reactions. Mg in the
Knyahinya objects exhibits apparent equilibration with
respect to the chondritic MgO/Al,O3, ratio, as objects
KNI, KN6, KN7, KN16, and KN17 plot on or close to
the solar abundance ratio line (Fig. 5c). However, their
original composition was probably rich in MgO (as
revealed by the MgO content of most nonporphyritic
objects in UOCs) and, due to equilibration processes
(Fe*" exchange reactions), the MgO contents now plot
close to the solar MgO/Al,O5 ratio. The objects of
Ouzina show a large scatter far away from the cosmic
MgO/Al,05; abundance ratio line, consistent with Mg
mobility during metasomatism (Fig. 5c).

Turning to the volatile elements, metasomatic
addition of alkalis has created variable Na/K ratios in
the objects. For a given chondrule, the final Na/K ratio
depends on when and for how long it was exposed to an
alkali-rich fluid or vapor. The sums of the volatile
components K,O + Na,O do not show any correlation
with refractory lithophile elements (e.g., Al,O3) in
objects of the Knyahinya EOC (Fig. 2b). However, those
of Ouzina scatter around the CI line. This correlation
could indicate re-equilibration processes with a
chondritic reservoir.

In summary, the differences in the chemical trends
for the objects from Ouzina as compared with those in
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Knyahinya probably indicate that they were generated
and/or processed in different environments.

Trace Element Systematics

Yb-Ce-Sc Ratios

The compatible/refractory element Yb is plotted
against the incompatible/refractory element Ce in
Fig. 6a, and against the compatible/refractory element

Sc in Fig. 6b. Although Ce might appear to be a poor
choice as representative of the LREE as compared with
La (due to its redox-sensitive volatility), both
incompatible elements exhibit similar trends (see inset in
Fig. 6a). Our choice of Ce is based on the fact that La is
highly mobile and also much less abundant than Ce.

The Knyahinya nonporphyritic chondrules have well-
correlated Yb/Ce and Sc/Yb ratios that trend above the
corresponding ratios for CI chondrites. The observed
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steep Sc/YDb correlation could reflect the crystal-chemical
preference of the pyroxene-dominated objects of
Knyahinya for Sc relative to Yb. The correlation of Yb
and Ce contents shows that the elements were slightly
fractionated from the primordial ratio, similar to what has
been observed in nonporphyritic objects in UOCs
(Fig. 6a, Engler et al. 2007). Sc/Yb ratios for the Ouzina
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(UOCs) (Engler et al. 2007) are shown for comparison.

nonporphyritic chondrules scatter around the CI
chondritic ratios (Fig. 6b) and show no correlation of Yb
and Ce. Again, this indicates that the environments in
which the objects of the Rumuruti chondrite evolved were
different from those of the Knyahinya chondritic rocks.

Fe-W Ratios

A diagram of Fe versus W contents (Fig. 6¢)
provides some information concerning the redox
conditions and history of W in the Knyahinya and
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Fig. 7. Bulk analyses of lithophile trace elements normalized to Cl abundances of all studied objects in a) Knyahinya and b)

Ouzina compared with those of UOCs (Engler et al. 2007).

Ouzina nonporphyritic chondrules. Fe/W ratios in the
Knyahinya objects tend to be higher than the solar ratios,
suggesting that Fe* " was added to, or W removed from,
the Knyahinya objects during sub-solidus metasomatic
processes. The objects in Ouzina, in contrast, show more
scatter with three chondrules exhibiting anomalously
high W concentrations. Overall, despite their very low
metal contents, Ouzina nonporphyritic chondrules are
richer in W (0.9-2x CI) than those in Knyahinya (0.1-
0.7x CI). The W enrichments can be explained by
secondary processing under oxidizing conditions, where

W becomes lithophile and is therefore incorporated
preferentially into the silicate phases of the chondrules
(e.g., Rambaldi et al. 1979).

LREE-HREE-HFSE Patterns

Individual nonporphyritic chondrules in Knyahinya
and Ouzina have variable abundances of refractory,
moderately volatile, and volatile lithophile elements, but
the trace element abundance patterns of the different
objects are relatively uniform within each chondrite
(Fig. 7a). For Knyahinya, refractory element abundances
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vary considerably between 0.1 and 14x CI. But almost
every object has a CI chondrite-normalized pattern that
is depleted in LREE relative to the majority of the ultra-
refractory elements, including Sc, Ca, and the high-field-
strength elements (HFSEs; Zr, Hf, Th, U, Ti, Ta, Nb), as
well as relative to the majority of HREE. All show
variable positive Eu anomalies and a smooth continuous
increase in enrichment of HREE from Gd to Lu. For
Ouzina objects (Fig. 7b), ultra-refractory element
abundances are similar to those in Knyahinya objects,
but rare earth elements in Ouzina (approximately 0.8-8x
CI) are more enriched than in Knyahinya (approximately
0.2-2x CI). Ouzina objects have CI chondrite-normalized
REE patterns that are slightly LREE-depleted with small
positive or negative Eu anomalies.

Compared with the bulk trace element abundance
patterns of nonporphyritic chondrules from UOCs
(Engler et al. 2007), those in Knyahinya and Ouzina
indicate a more complicated genesis (Figs. 7a and 7b). The
depletion trend of LREE with respect to HREE and
HFSE documents variable degrees of LREE transport
into an external mineral sink (e.g., Rambaldi et al. 1981)
and restricted mobility of other refractory trace elements.
The presence of “mysterite” and “holy smoke” (Laul
et al. 1973; Higuchi et al. 1977; Rambaldi et al. 1981) in
some chondrite matrices could indicate that this transport
was a parent body process. The fact that Eu does not show
large anomalies relative to the other REE in the Ouzina
objects suggests that it was oxidized and thus behaved like
the other + 3 REE during secondary processing.

Moderately Volatile Elements

The moderately and highly volatile elements (Sr, Ba,
Mn, V, Cr, Rb, Cs, W) show a volatility-dependent
depletion in Knyahinya and Ouzina nonporphyritic
chondrules, with normalized abundances tending to
decrease from Sr to W (Figs. 7a and 7b). This pattern
may reflect removal of the chondrules and related
objects from the nebular gas before complete
condensation of these elements. However, some of the
objects exhibit fractionations that may reflect element
mobility during metasomatic processes. In particular,
the CI chondrite-normalized patterns for all of the
Knyahinya objects show negative Cs anomalies, and
some show negative Cr anomalies as well (Fig. 7a). All
the Ouzina objects have negative Mn anomalies but
near chondritic Cr and V normalized abundances,
suggesting that these elements equilibrated with the
chondritic reservoir during secondary processing. Some
objects have negative Cs anomalies and others have
positive Rb and Cs anomalies (Fig. 7b). The strongly
fractionated Rb/Cs ratios (up to 10 x CI) in all studied
objects (Fig. 7b) imply low original contents and
restricted mobility of the large Cs ion. While Na,O and
K>O were able to re-equilibrate with the chondritic
system in Ouzina objects (Fig. 2b), the large Rb and Cs
ions could not (Fig. 4a).

Tungsten abundances in all objects appear to be
variable, similar to Rb and Cs. This is likely because W
is an incompatible and volatile element under oxidizing
conditions.
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Y-Ho Ratios

Pack et al. (2007) showed that concentrations of Y
and Ho are highly variable in porphyritic and
nonporphyritic chondrules from unequilibrated ordinary
and CV3 chondrites, whereas Y/Ho ratios
(approximately 26) show very little variation. Because
large fractionations of these two elements are not
expected during thermal metamorphism (Blundy and
Wood 2003), the Y and Ho concentrations in the
nonporphyritic chondrules of Knyahinya and Ouzina
most likely are a primary feature acquired during
formation. Chondrules from Knyahinya have Y and Ho
concentrations overlapping those of the majority of
nonporphyritic chondrules in UOCs (Fig. 8). Chondrules
from Ouzina have higher Y and Ho contents, more akin
to those measured in the nonporphyritic chondrules of
Allende CV3 chondrite (Pack et al. 2007). The Y/Ho
ratios for all objects are approximately 26 (Knyahinya
Y/Ho: 2542 = 1, 20, and Ouzina Y/Ho: 259 + 1.4, 20)
indicating that this ratio was similar in the nebular regions
where nonporphyritic pyroxene, pyroxene/olivine micro-
chondrules, and chondrule fragments from Knyahinya
and Ouzina were formed.

CONCLUSIONS

All nonporphyritc chondrules of the equilibrated
chondrites, L/LL5 Knyahinya and R4 Ouzina, have
major and trace element abundances that are
systematically fractionated relative to CI abundances
largely as a result of late stage equilibration processes.
This process, generally called “metamorphism,” can be
seen in the abundances of major and trace elements
involving mobilization of incompatible elements. During
secondary processing, incompatible trace elements—in
particular the LREE—were removed from the
chondrules to a trace element sink located outside the
chondrules. This could have occurred before or after
accretion. Whereas the LREE are mobile, the HREE and
high-field-strength elements are less so and therefore
remained fixed at their high primary abundances in the
objects, producing the fractionated trace element
patterns exhibited by many chondrules from Knyahinya
and Ouzina.

Abundance pattern trends in the chondrules of the
two chondrites are broadly similar but the small to
absent Eu anomalies and the high abundance of W in
Ouzina objects reflect processing under more oxidizing
conditions.

The irregular abundance variations of the moderately
volatile elements could reflect incomplete late stage
metasomatic processes. These elements are mobile and
thus are involved in vapor-solid exchange processes. FeO
as well as the moderately volatile elements (e.g., V, Cr,
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Mn, as well as K, and Na) were probably added to the
objects in differing amounts—depending on the redox
conditions of the system—during metasomatic processes
in equilibrium with a chondritic reservoir (e.g., Na + K).

All  of the nonporphyritic chondrules from
Knyahinya and Ouzina show undisturbed Y/Ho solar
ratios, a feature that they share with the nonporphyritic
chondrules of UOCs, attesting to the robustness of
primary 'Y and Ho correlations during secondary
processing.
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